Skip To Main Content
Intel logo - Return to the home page

Sign In

Your username is missing
Your password is missing

By signing in, you agree to our Terms of Service.

Forgot your Intelusername orpassword?

Frequently Asked Questions

Do you work for Intel? Sign in here.

Don’t have an Intel account? Sign up here for a basic account.

My Tools

Select Your Region

Asia Pacific

  • Asia Pacific (English)
  • Australia (English)
  • India (English)
  • Indonesia (Bahasa Indonesia)
  • Japan (日本語)
  • Korea (한국어)
  • Mainland China (简体中文)
  • Taiwan (繁體中文)
  • Thailand (ไทย)
  • Vietnam (Tiếng Việt)

Europe

  • France (Français)
  • Germany (Deutsch)
  • Ireland (English)
  • Italy (Italiano)
  • Poland (Polski)
  • Spain (Español)
  • Turkey (Türkçe)
  • United Kingdom (English)

Latin America

  • Argentina (Español)
  • Brazil (Português)
  • Chile (Español)
  • Colombia (Español)
  • Latin America (Español)
  • Mexico (Español)
  • Peru (Español)

Middle East/Africa

  • Israel (עברית)

North America

  • United States (English)
  • Canada (English)
  • Canada (Français)
Sign In to access restricted content

Using Intel.com Search

You can easily search the entire Intel.com site in several ways.

  • Brand Name: Core i9
  • Document Number: 123456
  • Code Name: Alder Lake
  • Special Operators: “Ice Lake”, Ice AND Lake, Ice OR Lake, Ice*

Quick Links

You can also try the quick links below to see results for most popular searches.

  • Product Information
  • Support
  • Drivers & Software

Recent Searches

Sign In to access restricted content

Advanced Search

Only search in

Sign in to access restricted content.
  1. Intel® Products
  2. Intel® FPGA, SoC FPGA and CPLD
  3. Intel® Cyclone® FPGA and SoC FPGA Devices
  4. Cyclone® IV FPGA

The browser version you are using is not recommended for this site.
Please consider upgrading to the latest version of your browser by clicking one of the following links.

  • Safari
  • Chrome
  • Edge
  • Firefox

Cyclone® IV FPGA

The Cyclone® IV FPGA family extends the Intel® Cyclone® FPGA series leadership in providing low power FPGA, with transceiver options. Ideal for high-volume, cost-sensitive applications, Cyclone® IV FPGA enable you to meet increasing bandwidth requirements. The product family is recommended for Edge-Centric applications and designs.

See also: FPGA Design Software, Design Store, Downloads, Community, and Support

Cyclone® IV FPGA

  • Overview
  • Products
  • Documentation
  • Features

Cyclone® IV GX FPGA

Architecture consists of up to 150K vertically arranged logic elements (LEs).

Cyclone® IV E FPGA

Architecture consists of up to 115K vertically arranged logic elements (LEs).

Benefits

System Costs Optimization

All Cyclone® IV FPGA require only two power supplies for operation, simplifying your power distribution network and saving board costs, board space, and design time. With the integrated transceivers on the Cyclone® IV FPGA architecture, you will get simplified board design and integration. Furthermore, the flexibility of the transceiver clocking architecture allows you to implement multiple protocols while fully utilizing all available transceiver resources. The integration and flexibility of the Cyclone® IV GX FPGA enables you to design in a smaller, cost optimized device, lowering your total system costs.

Reduce Power Consumption

Built on an optimized 60-nm low-power process, Cyclone® IV E FPGA extend the low-power leadership of previous-generation Cyclone® III FPGA. Cyclone® IV E FPGA reduce core voltage, which lower total power by 25 percent compared to the predecessor. With Cyclone® IV GX transceiver FPGA, you can build a PCI Express* to Gigabit Ethernet bridge for less than 1.5 watts.

Intel's Cyclone® IV FPGA are optimized for the lowest power consumption, helping you better manage thermal requirements. As a result, you can reduce or eliminate system cooling costs and also extend battery life for handheld applications.

Cyclone® IV FPGA Power Consumption

The Cyclone® IV FPGA family demonstrates Intel’s leadership in offering power-efficient FPGA. With enhanced architecture and silicon, advanced semiconductor process technology, and power management tools, power consumption for Cyclone® IV FPGA has been reduced by up to 25 percent compared to Cyclone® III FPGA.

The following figure shows the static power consumption of Cyclone® IV E devices at 85°C junction temperature. The smallest Cyclone® IV EP4CE6 device consumes as little as 38 mW at 85°C and the largest Cyclone® IV EP4CE115 device consumes as little as 163 mW static power at 85°C.

Benefits of Low Power Consumption

Reducing the power consumption of programmable logic devices carries far-reaching benefits for many applications. However, lower power consumption is only one aspect of system power. The following figure shows that Cyclone® IV GX FPGA lower FPGA power consumption by an average of 30 percent.

Silicon and Architectural Optimizations

Static power can increase dramatically with the sub-micron semiconductor process if no power-reduction strategies are employed. Static power consumption rises at submicron process technologies largely because of increases in leakage current subthreshold leakage.

By employing a low-power (LP) process technology traditionally used by major semiconductor manufacturers for handset components, Intel has minimized the leakage current for low static power. The smaller geometries made possible by this advanced process, combined with architectural optimizations, enable Cyclone® IV FPGA to keep dynamic and static power consumption to a minimum. The process and architectural enhancements that Intel employs with Cyclone® IV FPGA includes the use of low-k dielectrics, variable channel lengths and oxide thicknesses, and multiple transistor threshold voltages.

Accurate Power Estimation and Analysis

Intel supports power estimation and analysis, from design concept through implementation, with the most accurate and complete power management design tools. Intel offers up to 125°C and worst-case silicon power estimates for the low-cost FPGA families throughout its tool suite. Intel offers the following power estimation and analysis resources:

  • Cyclone® IV early power estimator.
  • Intel® Quartus® Prime power analysis and optimization technology.
  • Power Management Resource Center.

Use the early power estimator (EPE) during the design concept phase and the Power Analyzer during design implementation. The EPE is a spreadsheet-based analysis tool that enables early power scoping based on device and package selection, operating conditions, and device utilization.

The Power Analyzer is a far more detailed power analysis tool that uses actual design placement and routing and logic configuration. The tool can use simulated waveforms to very accurately estimate dynamic power. The power analyzer, in aggregate, usually provides ± 10 percent accuracy when used with accurate design information. The Intel® Quartus® Prime power models closely correlate to actual silicon measurements.

Intel uses more than 5,000 different test configurations to measure the power of individual components within an Intel® Cyclone® series FPGA. Each configuration is focused on measuring a single circuit component of the FPGA in a specific configuration.

Intel® Quartus® Prime Power Optimization

Design implementation details can improve performance, minimize area, and reduce power. Historically, the performance and area trade-offs have been automated within the register transfer level (RTL) through the place-and-route design flow.

Intel® Quartus® Prime software power optimization tools automatically use the Cyclone® IV FPGA architecture capabilities to reduce up to 25 percent lower dynamic power consumption compared to Cyclone® III FPGA.

The Intel® Quartus® Prime development software has many automatic power optimizations that are transparent to the designer but provide optimal utilization of the FPGA architecture to minimize power. For example, with Intel® Quartus® Prime software, you can:

  • Transform major functional blocks.
  • Map user RAMs so they use less power.
  • Restructure logic to reduce dynamic power.
  • Correctly select logic inputs to minimize capacitance on high-toggling nets.
  • Reduce area and wiring demand for core logic to minimize dynamic power in routing.
  • Modify placement to reduce clocking power.

Show more Show less

Cyclone® IV E Typical Static Power Consumption

System Power Savings Using Cyclone® IV GX FPGA

The combination of increased integration and a low-power Cyclone® IV GX FPGA results in significant system-level benefits for a variety of applications:

  • Portable or handheld battery-powered devices.
  • Space-constrained and other thermally challenging environments.
  • Price-sensitive applications where cooling systems are not cost effective.

For more information on lowering your total cost of ownership and achieving higher reliability in your designs, refer to the Decrease Total System Costs with Industry's Lowest Cost, Lowest Power FPGA White Paper (PDF).

Additional Resources

Explore more content related to Intel® FPGA devices such as development boards, intellectual property, support and more.

The specified image does not include the correct rendition: intel.web.128.96

Resource center for training, documentation, downloads, tools and support options.

The specified image does not include the correct rendition: intel.web.128.96

Get started with our FPGA and accelerate your time-to-market with Intel-validated hardware and designs.

The specified image does not include the correct rendition: intel.web.128.96

Shorten your design cycle with a broad portfolio of Intel-validated IP cores and reference designs.

The specified image does not include the correct rendition: intel.web.128.96

Explore Quartus Prime Software and our suite of productivity-enhancing tools to help you rapidly complete your hardware and software designs.

The specified image does not include the correct rendition: intel.web.128.96

Get in touch with sales for your Intel® FPGA product design and acceleration needs.

The specified image does not include the correct rendition: intel.web.128.96

Decipher Intel® FPGA part numbers, including the significance of certain prefixes and package codes.

The specified image does not include the correct rendition: intel.web.128.96

Contact an Intel® Authorized Distributor today.

Compare Products
  • Company Information
  • Our Commitment
  • Diversity & Inclusion
  • Investor Relations
  • Contact Us
  • Newsroom
  • Site Map
  • Jobs
  • © Intel Corporation
  • Terms of Use
  • *Trademarks
  • Cookies
  • Privacy
  • Supply Chain Transparency
  • Do Not Share My Personal Information

Intel technologies may require enabled hardware, software or service activation. // No product or component can be absolutely secure. // Your costs and results may vary. // Performance varies by use, configuration and other factors. // See our complete legal notices and disclaimers. // Intel is committed to respecting human rights and avoiding complicity in human rights abuses. See Intel’s Global Human Rights Principles. Intel’s products and software are intended only to be used in applications that do not cause or contribute to a violation of an internationally recognized human right.

Intel Footer Logo