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Introduction

1 Introduction

This document provides microarchitectural description of the Intel® Itanium®
processor 9500 series (formerly code-named Poulson), performance monitor
information, and other guidance to assist software developers in optimizing for the this

Intel® Itanium® processor.

1.1 Terminology

The following definitions are for terms that will be used throughout this document:

Term

Definition

Dispersal

The process of mapping instructions within bundles to functional
units

Bundle rotation

The process of bringing new bundles into the two-bundle issue
window

Split issue

Instruction execution when an instruction does not issue at the same
time as the instruction immediately before it.

Advanced load address table (ALAT)

The ALAT holds the state necessary for advanced load and check
operations.

Translation lookaside buffer (TLB)

The TLB holds virtual to physical address mappings

Virtual hash page table (VHPT)

The VHPT is an extension of the TLB hierarchy, which resides in the
virtual memory space, is designed to enhance virtual address
translation performance.

Hardware page walker (HPW)

The HPW is the third level of address translation. It is an engine that
performs page look-ups from the VHPT and seeks opportunities to
insert translations into the processor TLBs.

Register stack engine (RSE)

The RSE moves registers between the register stack and the backing
store in memory.

Event address registers (EARS)

The EARs record the instruction and data addresses of data cache
misses.

1.2 Related Documentation

The reader of this document should also be familiar with the material and concepts
presented in the following documents:

« 2.3 Intel® Itanium® Architecture Software Developer’s Manual, Volume 1:

Application Architecture

« 2.3 Intel® Itanium® Architecture Software Developer’s Manual, Volume 2: System

Architecture

« 2.3 Intel® Itanium® Architecture Software Developer’s Manual, Volume 3:

Instruction Set Reference

« Intel® Itanium® Architecture Software Developer’s Manual Specification Update

« Intel® Itanium® 2 Processor Reference Manual for Software Development and

Optimization

- Dual-Core Update to the Intel® Itanium® 2 Processor Reference Manual

Intel® Itanium® Processor 9500 Series
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1.3 Identifying Intel® Itanium® Processors

The eight generations of the Intel® Itanium® processor can be identified by their
unique CPUID values. For simplicity of documentation, throughout this document we
will group all processors of like model together. Table 1-1 lists the CPUID values of all of
the Intel® Itanium® processors. Table 1-2 lists Intel® Itanium® processors and their

grouping.
Table 1-1. Intel® Itanium® Processor Family and Model Values
Family Model Description

0x07 0x00 Intel® Itanium® Processor

Ox1f 0x00 Intel® Itanium® Processor (up to 3 MB L3 cache)
Ox1f 0x01 Intel® Itanium® Processor (up to 6 MB L3 cache)
Ox1f 0x02 Intel® Itanium® Processor (up to 9 MB L3 cache)
0x20 0x00 Intel® Itanium® Processor 9000 Series

0x20 0x01 Intel® Itanium® Processor 9100 Series

0x20 0x02 Intel® Itanium® Processor 9300 Series

0x21 0x00 Intel® Itanium® Processor 9500 Series

Table 1-2. Definition Table (Sheet 1 of 2)

Processor

Abbreviation

Intel® Itanium® Processor 900 MHz with 1.5 MB L3 Cache

Intel® Itanium® Processor 1.0 GHz with 3 MB L3 Cache

Intel® Itanium® Processor (up to 3 MB

L3 cache)

L3 Cache

Low Voltage Intel® Itanium® Processor 1.0 GHz with 1.5 MB

Intel® Itanium® Processor 1.40 GHz with 1.5 MB L3 Cache

Intel® Itanium® Processor 1.40 GHz with 3 MB L3 Cache

Intel® I1tanium® Processor 1.60 GHz with 3 MB L3 Cache

Intel® I1tanium® Processor 1.30 GHz with 3 MB L3 Cache

Intel® Itanium® Processor 1.40 GHz with 4 MB L3 Cache

Intel® Itanium® Processor 1.50 GHz with 6 MB L3 Cache

Intel® Itanium® Processor (up to 6 MB

L3 cache)

L3 Cache

Low Voltage Intel® Itanium® Processor 1.30 GHz with 3 MB

Intel® Itanium® Processor 1.60 GHz with 3 MB L3 Cache at 400
and 533 MHz System Bus (DP Optimized)

Intel® Itanium® Processor 1.50 GHz with 4 MB L3 Cache

Intel® Itanium® Processor 1.60 GHz with 6 MB L3 Cache

Intel® Itanium® Processor 1.60 GHz with 9 MB L3 Cache

Intel® Itanium® Processor 1.66 GHz with 6 MB L3 Cache

Intel® Itanium® Processor 1.66 GHz with 9 MB L3 Cache

Intel® Itanium® Processor (up to 9 MB

L3 cache)

Intel® Itanium® Processor 9010

Intel® Itanium® Processor 9015

Intel® Itanium® Processor 9020

Intel® I1tanium® Processor 9030

Intel® I1tanium® Processor 9040

Intel® Itanium® Processor 9050

Intel® Itanium® Processor 9000 Series

(dual-core)
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Table 1-2. Definition Table (Sheet 2 of 2)

intel.

Processor

Abbreviation

Intel® Itanium® Processor 9110N

Intel® Itanium® Processor 9120N

Intel® Itanium® Processor 9130M

Intel® Itanium® Processor 9140N

Intel® Itanium® Processor 9140M

Intel® Itanium® Processor 9150N

Intel® Itanium® Processor 9150M

Intel® Itanium® Processor 9100 Series
(dual-core)

Intel® Itanium® Processor 9310

Intel® Itanium® Processor 9320

Intel® Itanium® Processor 9330

Intel® Itanium® Processor 9340

Intel® Itanium® Processor 9350

Intel® Itanium® Processor 9300 Series
(quad-core)

Intel® Itanium® Processor 9520

Intel® Itanium® Processor 9540

Intel® Itanium® Processor 9550

Intel® Itanium® Processor 9560

Intel® Itanium® Processor 9500 Series
(eight-core)

Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide
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2

The Intel Itanium Processor
9500 series Core

The Intel Itanium processor 9500 series introduces a redesigned Itanium architecture
core, which significantly improves both frequency and power efficiency through many
micro-architectural and technology advancements. Although the processor core can
trace its origin to the Intel Itanium processor 9300 series core, it is also the first major
revamp of the Intel Itanium core microarchitecture since the original Itanium® core
microarchitecture. The Intel Itanium processor 9500 series core has been re-optimized
from the ground-up for the current process technology and includes the elimination of
global stalls, re-design of most known critical paths, reduction in overall wiring delays
through better floor planning and power efficiency improvements through elimination
of dynamic circuits and improved clock gating.

2.1 Overview
The Intel Itanium processor 9500 series core provides a 12-wide issue (4 bundles) 11
stage deep pipeline that can fetch up to six instructions per cycle and retire up to 12 (4
bundles) instructions per cycle. The following is a summary of the key features
supported in the processor core:
= Use pipeline replays for pipeline control instead of global stall mechanisms.
* In-order 12 wide instruction (4 bundles) issue and retirement.
= A 96 entry instruction buffer per thread for decoupling the Front End (FE) and Back
End (BE).
« Execution Units:
— 6 integer ALU units
— 4 multimedia units
— 2 load/store units
— 1 integer multiply unit
— 2 floating point units capable of extended, double and single-precision
arithmetic with hardware support for denormal, unnormal and pseudo-normal
operands.
— 3 branch units
— support for nop squashing through a dedicated nop pipeline
= Independent FE and BE thread domains providing hardware support for 2 threads
per core.
= Duplicated first-level and second-level Data TLBs for the 2 threads.
« 32 extra General Registers increasing the stacked physical registers to 128.
- Dedicated load return paths from the MLD to the Integer Register File.
* Intel® Virtualization Technology (Intel® VT) for Intel® 64 or Itanium®
architecture (Intel® VT-i) 3 support - virtualization support extensions.
= New Data Prefetcher unit for improved software and hardware-initiated data
prefetching.
Intel® Itanium® Processor 9500 Series 17
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= Improved control speculation support via spontaneous deferral, multiple
outstanding page walks.

= Expanded memory operation hints for software to communicate cache locality,
cache allocation, prefetch hints and deferral information to hardware.

Figure 2-1. Core Pipeline

FET ‘ FDC

IPG REMN IBD DEC REG EXE DET WRB wa2
| Front-End Domain | Back-End Domain
A A S
-\.’(’- "‘\\/"
IPG — Instruction Pointer Generate IBD — Instruction Buffer and Dispersal
FET — Instruction Fetch DEC - Instruction Decode
FDC — Front-end Decode REG — Register Access
REN — Register Rename EXE - Instruction Execute

DET - Detect Exceptions
WRB — Writeback Commit
WB2 — Writeback-2 Retire

The first stage initiates the instruction fetch (IPG) of two bundles. The second stage
(FET) completes the FLI cache lookup and delivers the two bundles to the front end
decoding (FDC) stage which then passes them on to the register renaming (REN)
stage. The six instructions in the two bundles with their renamed register identifiers are
inserted into an appropriate memory (M), ALU (A), integer (1), floating point (F),
branch (B) and NOP (N) queues in the IBD stage. The first three stages operate on one
of two stages independently of the last 6 stages. Up to 12 instructions can be issued
from the instruction buffer queues in the IBD stage to 2 memory (M), 2 ALU (A), 2
integer (1), 2 FPU (F) and 3 branch (B) pipelines. NOP instructions do not use execution
pipelines and are managed within the control portion of the core pipeline. The
instructions issued by the instruction buffer are distributed and decoded in the DEC
stage, operand bypass occurs in the REG stage and execution starts in the EXE stage.
Exception information is coalesced in the DET stage, instruction commit vectors are
created in the WRB stage. The WB2 stage folds in late arriving error detection
information that may retry instruction execution.

Table 2-1. Core Pipelines
Pipeline Pipe Stages
Main IPG ‘ FET ‘ FDC ‘ REN | IBD DEC ‘ REG ‘ EXE | DET |WRB |wB2
MLD L1A | L1T L1H LIM |L1D |L1C |L1W
FPU | FP1 | FP2 | FP3 FP4 FP5 | FP6
18 Intel® Itanium® Processor 9500 Series
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Figure 2-2. Core Block Diagram

Front End
Thread Domain FLI
and Fetch/Pre-fetch ITLB -t -
Branch — - Engine
Prediction $
A ‘ Register Renaming ‘
T
Instruction Buffer (32 Bundles per thread),
Dispersal and Register Stack Engine
[elefe] [M{w{alap[i]  [F]F]
\A A VYVYVYYVY YN
Branch . 128 FP
'_g Registers 160 Integer Registers Registers Ll
z
o A A A A A A A
S8 v v v v v
T o7 Branch Integer ml\t/leu?t?r Floating
MLD 5 8 Units ALU v Point
8 (3% (6%) d Units
3 Int MPY Units %)
g (1% (4x)
\ 4
; FLD (Dual Porf) b Back End
-t . and TLB ; Thread Domain
- Ring |
LLC

Mid-level Instruction cache (MLI) — 512 kB, 8 way, 64B line x2 sectored, 9 cycle
latency, 1 read, 1 fill port, NRU replacement. States: Invalid, Valid, Killed

Instruction paging cache (IPC) — 128 entries, 50 physical address bit support, RID
and Key prevalidated

First-level Instruction cache (FLI) — 16 kB, 4 way, 64B line, single cycle latency, 1
read, 1 fill port, LRU replacement. States: Invalid, Valid

First-level TLB (FLITLB) — 32 entry, fully associative, NRU replacement

Instruction buffer (IBQ) — 96 instructions per thread, 32 instruction MQ (memory),
32 instruction AQ (alu), 32 instruction 1Q (integer), 32 instruction FQ (floating
point) and 16 bundle BQ (bru)

Execution ports: 2 M/A (memory/alu), 2 A (alu), 2 I/A (integer/alu), 2 F (fpu), 3 B
(branch) ports and 1 N (nop)

Integer registers (IRF) — 32 static, 16 banked, 128 stacked 64 bit registers plus 1
NaT bit per thread. 12 read ports, 10 write ports
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« Integer execution unit (IEU) — 2 M/A, 2 A and 2 I/A units. Most | and A instructions
are one cycle latency; some | and multi-media instructions are two cycle latency;
the one 32x32 multiplier is 4 cycle latency.

= Floating point register file (FRF) — 32 static, 96 rotating 80 bit registers per thread,
6 read ports, 6 write ports

= Floating point execution unit (FPU) — 2 fused multiply-accumulate and 2 misc
execution units. 6 cycle latency

= Branch resolution execution unit (BRU) — 3 branch execution units, 8 branch
registers per thread. Generates a bruFlushWrb signal on a branch mispredict, 10
cycle penalty.

« Predicate delivery unit (PDU) — 16 static and 48 rotating one-bit registers per
thread.

= ALAT (Advanced load address table) — 32 entry, 24-bit physical address support,
fully associative per thread

= First level data cache (FLD) — 16 kB, 4 way, 64B line, LRU replacement, single
cycle latency, 2 read, 2 write ports, write-through. TLB prevalidated

= First level data TLB (FLDTLB) — 32 entries per thread, fully associative, 4 kB, 8 kB
and 16 kB variable page size,

= Second level data TLB (DTB) - 128 entries per thread

The Intel Itanium Processor 9500 Series

Implementation Specific Behavior

Virtual and Physical Addressing

The processor core supports the full 64 bit virtual address space with 224 regions, 50
bits of physical address and 24-bit protection keys. Since the processor implements the
PSR.vm bit, the number of implemented virtual address bits is reduced by 1, that is,
from 61 to 60 when PSR.vm=1. This allows for creating a protected memory address
space under processor virtualization for the host or virtual machine manager.

Region Registers

The processor implements the full size of region register IDs (24b). Instead of looking
up the entire virtual address and the region, the region ID of a TLB entry is
prevalidated. A single bit is kept in the TLB (called RR match) which is set whenever
there is an insert operation or whenever there is a mov to RR operation to the
corresponding region register (selected by VA bits 63:61) with a RID that matches the
TLB entry's RID. The bit is cleared when a mov to RR occurs to the region register with
a different RID. This bit is used as an additional valid bit during a TLB lookup.

Protection Key Registers

The processor supports 16 protection key registers, with 24b of key. The keys are kept
prevalidated in the TLB. A PKR index field is added to the TLB entries. Whenever there
is a mov to PKR operation (to any PKR), if the key matches a TLB entry's key, then the
entry is prevalidated with the incoming key valid bit and the index field is written with
the index used in the mov to PKR operation. If the key does not match but the index of
the op matches with the PKR index in a TLB entry, then the key valid bit is cleared.

Intel® Itanium® Processor 9500 Series
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2.2.1.4

2.2.1.5

2.2.1.6

2.2.1.7

2.2.1.8

2.2.1.9

RSE stacked physical register file size

The processor adds 32 integer registers to the RSE stacked physical register file size for
a total of 128. These registers are referenced from the virtual register id space of r32—
r127, which is a 96 entry window that moves across the 128 entry stacked physical
register file. These additional registers improve performance by reducing the number of
RSE injected fill and spill operations. Intel Itanium processor 9300 series has 96
stacked physical registers.

Reversibility of ttag and thash

The VHPT hash is implementation specific. The processors hash is defined as:
if hpn = va{60:0} >> RR[va{63:61}].ps
tag = hpn ™ (RR[va{63:61}].rid << 39)
hash = (PTA.base{63:15} & (1 << 64 - 1<<PTA.size))
| (hpn™RR[va{63:61}].rid << 5) & (1 << PTA.size -1)

From the values of hash, tag, RR[va{63:61}].ps and PTA.size:
va{50:12+x} = tag{38-x:0} where RR.ps = (12 + x)
rid{23:10} = tag{62:49}
rid{9:0} = hash{14:5}va{21+x:12+x}
va{60:50} = tag{48—x:39—x}rid{9—x:0}. if x > 9, then the rid term is ignored

Purge Behavior

The processor supports the following page sizes for purges or inserts: 4K, 8K, 16K,
64K, 256K, 1M, 4M, 16M, 64M, 256M, 1G, 4G. A purge operation which uses a page
size that is not supported will take a reserved register field fault. The only exception is
an incoming shootdown operation which can specify a page size that's not supported by
the processor. The processor will then round the page size to the nearest supported
page size above the incoming page size and it will use that to execute the purge.

ptc.e — Purge translation cache entries

This is an architected instruction of type M28 with some implementation dependent
behavior. See Volume 3 of the "Intel 1A-64 Architecture Software Developer's Manual”
for the architected description and encoding. In the processor, one application of this
instruction will purge all translation cache (TC) entries from both the instruction and
data translation caches. This instruction purges TC entries from only the current
thread; Intel Itanium processor 9300 series purged both thread’s entries. The
"parameter" given in r3 is not used.

fc.i — Flush Cache, Instruction Cache Coherence

The processor does not flush the last level cache (LLC) on a fc.i instruction. This is to
assist with dynamic instruction translation performance by not moving the cache line to
memory to make it visible to the I-side. All previous Itanium CPUs flushed all caches
with this instruction.

NaT’d Id and st8.spill Behavior

The st8.spill will write the register’s 64-bit data portion to memory. The processor
returns a zero into the target register of all NaTed speculative loads, and also ensures
that all NaT propagating instructions perform all computations as specified by the
instruction pages.
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hint @ pause/priority

Hint @pause signals to hardware that the executing thread in the BE pipeline is willing
to give away execution resources and should be switched to the background. Hint
@priority signals to hardware that the executing thread in the BE pipeline is a high
priority thread and should generally not be switched away. Both of these hint
instructions are supported on all M, | and F execution units. The processor does not
support the hint.b or B-unit hint instructions i.e. hint.b will be ignored.

Unsupported Accesses and alignment

The following operations will generate unsupported reference faults:
* |d16/st16 to UC and WC space
= |dfe/stfe to UC and WC space

= Architecturally, semaphore operations are not allowed to UC and WC space.

The following are supported references subject to alignment requirements:
= |df.fill, stf.spill are supported to UC and WC space
The following operations and their respective data alignments are supported when
PSR.ac=0:
= All semaphores operations {xchg, cmpxchg, fetchadd} that are naturally aligned
= All 16 byte accesses that are naturally aligned
= All 10 byte accesses (ldfe/stfe) that do not cross a 16B boundary

« All FP 4, 8 byte accesses that do not cross a 16B boundary except tldfps which
must be naturally (8B) aligned

= All Integer 2, 4 and 8 byte accesses that do not cross an 8B boundary

Floating Point Software Assist (FPSWA) Faults

The processor adds the following instructions to the FPSWA faulting list:

= SIMD FMAC ops: fpma, fpms, fpnma, fpcvt

= SIMD mins and maxes: fpmax, fpmin, fpamin, fpamax

= fprcpa, fprgsrta

* fpcmp
The Intel Itanium processor 9500 series and Intel Itanium processor 9300 series also
take a FPSWA on the following instructions:

- frcpa

- frsqrta

The processor does not FPSWA on denormal, unnormal and pseudo-denormal
operands. These operand types are automatically normalized by the hardware.

Processor Instruction Issue Port Mapping

As mentioned previously, the processor core BE has 12 execution pipelines. The
instruction issue port map table below outlines which instructions can execute on which
pipelines and their execution latency. The Instruction Buffer (IBL) unit which houses
the instruction dispersal logic is responsible for ensuring this issue port map. The
twelve execution pipelines in the BE are:
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2 M-ports — MO (or PO), M1 (or P1)

e 2 l-ports — 10 (or P2), 11 (or P3)

2 A-ports — AO (or P4), Al (or P5)

2 F-ports — FO (or P6), F1 (or P7)

3 B-ports — BO (or P8), B1 (or P9), B2 (or P10)

1 N-port — capable of executing 12 nops per cycle

The table below lists various functional units that are available on each of the twelve
execution pipelines:

Table 2-2. Functional Unit Support on Ports

Port Type Pipelines Functional Capabilities
M-port MO, M1 1-cycle ALU, Memory Address support
I-port 10 1-cycle ALU, 2-cycle MM ALU, Integer Shifter, MM Shifter,
Misc I-unit, Integer Multiplier
11 1-cycle ALU, 2-cycle MM ALU, Integer Shifter, MM Shifter,
Misc I-unit
A-port AO, A1 1-cycle ALU, 2-cycle MM ALU, Misc A-unit
F-port FO, F1 6-cycle Fmac unit, 6-cycle Fmisc unit
B-port BO, B1, B2 Branch resolution unit
N-port NO Handles up to 12 nop, brp instructions

Figure 2-3. BE Execution Pipelines

Instruction Buffer (IBQ)
Unified CntQ
W [ | [ s | o
~v il 4 v A4 A4 v
MO M1 10 11 A0 Al NO
IALU IALU IALU IALU IALU IALU NOP
MEM MEM MMALU | MMALU MMALU | MMALU
IMISC | IMISC AMISC | AMISC
ISHFT ISHFT

PSMU PSMU
BITCNT BITCNT
IMUL

The tables below specify the instruction issue port map for A-type, I-type, M-type, F-
type and B-type instructions.
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Table 2-3. Issue Port Map for A-type Instructions
M | A
Format Description Examples
oO|1(0(1|]0]|1
111|111 ]|1]|A1 Integer ALU add, sub, addp4, and, andcm, or, xor
1 (12 (1|11 |1]|A2 Shift Left and Add shladd, shladdp4
111|111 ]|1]|A3 Integer ALU sub, and, andcm, or, xor
111|111 ]|1]|A4 Add Imm adds, addp4
1|1 |1 (1 (1|1 ]|A5 Add Imm addl
1|11 (1 (1|1 |A6-A8 Integer compare cmp, cmp4
212 (2|2 |A9 MM ALU padd, psub, pavg, pavgsub, pcmp
2|12 |2 |2 |Al0 MM shift and Add pshladd, pshradd
Legend:
1 — 1-cycle latency, issues to that port
2 — 2-cycle latency, issues to that port
Note: A9, A10 issue width is different from Intel Itanium processor 9300 series. These could issue to all 6
ports on Intel Itanium processor 9300 series. Additional decode will be required in the processor to
steer them away from M-ports.
Table 2-4. Issue Port Map for 1/X-type Instructions (Sheet 1 of 2)
M | A
N Format Description Examples
of1f{o0f1| O 1
4 11 MM Mult & Shift pmpyshr
4 12 MM Mult pmpy, mpy4, mpyshl4
2|2 MM Mix/Pack/Unpack mix, pack, unpack, pmin, pmax
2|2 psad
2|2 13-4 MM Mux mux1, mux2
2|2 15 Shift Right Variable pshr, shr
212 16 MM Shift Right Fixed pshr
2|2 17 Shift Left Variable pshl, shl
2|2 18 MM Shift Left Fixed pshl
212 19 Bit Strings popcnt, clz
111 110 Shift Right Pair shrp
1|1 111 Extract extr
1|1 112-15 Deposit dep, dep.z
111 116-17 Test bit/ Test NaT tbit, tnat
N [ 118 Nop nop.i
1|1 Hint hint.i
11 119 Break break.i
1111, 1, 120 Integer Spec Check chk.s.i
1|1 121 Move BR mov to BR
2 122 Move BR mov from BR
111 123-24 Move PR mov to PR
2 125 Move PR mov from PR/IP
111 126-27 Move AR mov to AR
24 Intel® Itanium® Processor 9500 Series
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Table 2-4.

Table 2-5.

intel.

Issue Port Map for I/X-type Instructions (Sheet 2 of 2)

M | A
Format Description Examples
oO(1(0]|1 (0] 1
2 128 Move AR mov from AR
1|1 129 Sign/Zero Extend sxt, zxt
2|2 Compute Zero Index czx
1|1 130 Test Feature tf
101 X1 Break break.x
1(1 X2 Move Long Imm movl
1(1 X5 Nop nop.x
111 Hint hint.x

Notes:

1 — 1-cycle latency, issues to that port
2 — 2-cycle latency, issues to that port
4 — 4-cycle latency, issues to that port
1, — 1-cycle latency, instructions can issue to A-port if I-ports are already subscribed

N — squashed nop

Multiply instructions are changing to 4-cycle latency (over 2 on Intel Itanium processor

9300 series).

The mov to br/pr/ar instructions may issue on either 10 or I1 but the same resource
cannot be targeted in the same cycle. For example, a mov to br could be paired with a
mov to pr but not with another mov to br. Note that it is possible to perform a mov to
AR.EC and a mov to AR.LC in the same cycle, that is, each AR is considered to be a
different resource.

Issue Port Map for M-type Instructions (Sheet 1 of 2)

M | A
Format Description Examples

o101 (0] 1
X | X M1-3 Integer Load Id, Id.a, Id.c, Id.s, Id.sa, Id16
X [ X M4-5 Integer Store st, st.rel, st.spill, st16
X | X M6-8 FP Load |df, Idf.a, Idf.sa, Idf.c
X | X M9-10 FP Store stf, stf.spill
X | X M11-12 FP Load Pair Idfp, Idfp.a, Idfp.sa, Idfp.c
X [ X Xa Xa M13-15 Line Prefetch Ifetch
X | X Ifetch.fault, Ifetch.excl
X | x Xa | Xa M51 Ifetch
X [ X M52 Counted Line Prefetch Ifetch.count
X | X M16-17 Semaphore cmpxchg, xchg, fetchadd
X | X M18 Set FR setf
X | X M19 Get FR getf
X | X Xa | Xa M20 Int Spec Check chk.s.m
X [ X M21 FP Spec Check chk.s.m
X [ X M22-23 Adv Load Check chk.a
X [ X M24 Inval ALAT invala
X Sync/Serialize/Fence sync.i, srlz.d, srlz.i, mf, fwb

Intel® Itanium® Processor 9500 Series
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Table 2-5. Issue Port Map for M-type Instructions (Sheet 2 of 2)
M | A
N Format Description Examples
O|l1|0(1 (0] 1
X M25 RSE Control flushrs, loadrs
X | X M26-27 ALAT Entry Inval invala.e
X M28 Flush Cache fc, fc.i
X M29-33 Mov AR/CR mov ar, mov cr
X M34 Allocate Stack Frame alloc
X M35-36 Mov PSR mov psr
X | X M37 Break break
X M38-40 Probe probe.r, probe.w
X M41 TC insert itc.d, itc.i
X M42 TR insert itr.d, itr.i
X M43 Mov from Indirect mov rr/dbr/ibr/pkr/pmc/pmd
X M44 System Mask sum, rum, ssm, rsm
X mM45 TC, TR purge ptc.l, ptc.g, ptc.ga, ptr.d, ptr.i
X M46 Translation access thash, ttag, tpa, tak
X M47 Purge Entry ptc.e
N [ M48 Nop nop.m
X M49 Hint hint.m
M50 Move to DAHR mov dahr
Notes: )
X — issues to port
Xa — Instructions can issue to A-port if M-ports are already subscribed
N — squashed nop
Table 2-6. Issue Port Map for F-type instructions
F
N Format Description Examples
o1
6 | 6 F1 FP Multiply Add fma, fnma, fms, fnms
6 |6 F2 Fixed Multiply Add Xxma
6 |6 F3 FP Select fselect
6 |6 F4 FP Compare fcmp
6 |6 F5 FP Class fclass
6 |6 F6 FP Reciprocal Approx frcpa
6 |6 F7 FP Square Root frsqrta
6 | 6 F8 FP Min/Max fmin, famin, fmax, famax
6 |6 F9 FP Merge/Logical fmerge, fmix, fsxt, fand, fandcm, for, fxor
6 |6 F10-11 FP Conversion fevt
6 |6 F12-14 FP Status Field fsetc, fclrf, fchkf
6 |6 F15 Break break.f
N | F16 Nop nop.f
6 |6 Hint hint.f
26 Intel® Itanium® Processor 9500 Series
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Table 2-7. Issue Port Map for B-type Instructions
B
N Format Description Examples
o|1|2
X [ X [ X B1 IP-rel Branch br.cond
X br.wexit, br.wtop
X B2 IP-rel Counted Branch br.cloop, br.cexit, br.ctop
X B3 IP-rel Call br.call
X | X | X B4-5 Indirect Branch br.cond, br.call, br.ia, br.ret
N | B6-7 Branch Predict brp, brp.ret
X B8 Misc cover, clrrrb, rfi, bsw, epc, vmsw
X | X B9 Break break.b
N Nop nop.b
X [ X [ X Hint hint.b
2.2.2 Processor Core Pipeline
As discussed above, the processor core pipeline consists of a Front-end or FE pipeline
and a Back-end or BE pipeline. The FE and the BE each have their own pipeline control
mechanisms consisting of replays, flushes and stalls to account for various pipeline
hazards. For a discussion of the FE pipeline control mechanisms, please refer to the IFR
chapter in the Instruction Fetch section. The figure below shows the primary BE
pipeline control mechanisms. Generally, the BE pipeline has been converted from a
global stall based microarchitecture on previous Itanium processors to a replay based
micro-architecture on the Intel Itanium processor 9500 series.
Figure 2-4. Back-End Pipeline Control Mechanisms
<
< WB2 Flush
WRB Flush
=z
1]
w
IPG FET FDC REN IBD DEC REG EXE DET WRB WB2
<
=
IBD Stall EXE Replay|
< DET Repl
eplay|
< WB2 Replay
<
2.2.3 New Instruction Support

The processor is fully compliant with latest revisions of the Intel Itanium Architecture

SDM and adds support for the following new instructions:
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Table 2-8. New Instruction Support

New Instruction Description

clz Counts the number of leading zeros in a 64-bit GR value

hint @priority Indicates to processor that current thread is performing a high-priority task

Ifetch.count Counted line prefetch

mov dahr Move Data Access Hint Register (refer to Chapter 2.3.1 for further details)

mov r; = dahr[rs] Move Indirect (from dahr) register (refer to Chapter 2.3.1 for further details)

mpy4 Unsigned 32x32 integer multiply
mpyshl4 Unsigned 32x32 integer shift left and multiply
tf Test feature presence from features vector in CPUID[4]
Although tf is not a new instruction in the Intel Itanium architecture, the processor is
the first implementation that can return a true predicate. All previous implementations
have always returned a false predicate for all features.
2.2.4 Advanced Load Address Table (ALAT)
The ALAT is a 32 entry fully associative table that attempts to hold for the window of
data speculation the set of advanced (data speculative) loads that have executed but
whose target locations have not been modified by a store. The ALAT is mostly
unchanged in the processor except for the changes listed in Table 2-9.
Table 2-9. ALAT Changes
Intel Itanium Processor 9500 Previous Intel Itanium
Series Processors
number of ports 2 4
store precedes Id.c or chk.a by | 24-bit comparison 20-bit comparison
2 or more cycles
store precedes Id.c or chk.a by | 24-bit comparison 12-bit comparison
1 or cyclel
Id.c fail penalty 7 cycles (WB2 replay) forced FLD miss
chk.a fail penalty 19 cycles 14 cycles
banked register aliasing no yes
2.2.5 Data Translation Lookaside Buffers (TLBs)
The processor has two data TLBs: the FLDTLB and DTB. The FLDTLB isn’t really a
complete TLB because it is missing some information associate with translations. It's
entire purpose is to enable the FLD to have single cycle latency by pre-validating the
FLD with respect to the FLDTLB. "Pre-validation" means that each line in the FLD is
associated with an FLDTLB entry and that and access must hit on the associated entry
in the FLDTLB to hit on line in the FLD. Likewise, in order to trigger an FLD fill, an
access must hit in the FLDTLB. Independent of the outcome of the FLDTLB lookup, all
data accesses access the DTB. Table 2-10 lists some important characteristics of these
TLBs.
28 Intel® Itanium® Processor 9500 Series
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Table 2-10. Data TLB Characteristics

FLDTLB DTB

size 32 entries per thread 128 entries per thread, entries 64-
127 can only be TCs

latency 1 cycle 5 cycle minimum non-blocking
minimum DTB->FLDTLB transfer
latency, 2 cycle lookup latency
(part of MLD latency)

page sizes 4 KB, 8 KB, 16 KB 4KB-4GB

associativity

fully associative

fully associative

number of ports

2 read, 1 write

2 read, 1 write

replacment
algorithm

perfect LRU

4 quadrant NRU

max # primary
misses outstanding

1 DTB->FLDTLB transfer (non-
blocking), otherwise unlimited by
FLDTLB

1 blocking miss per thread; # of
non-blocking misses unlimited by
DTB

max # secondary
misses outstanding

unlimited by FLDTLB

# of non-blocking secondary
misses is unlimited by DTB

Table 2-11. Data TLB Differences from Previous Intel Itanium Processors
FLDTLB DTB
size twice the previous size; statically twice the previous size; statically
split between threads vs. split between threads vs.
dynamically split previously dynamically split previously
latency unchanged DTB->FLDTLB minimum latency is
up 1 but has gone from blocking to
non-blocking
page sizes unchanged unchanged
associativity unchanged unchanged
number of ports down from 4 down from 4
replacment improved from NRU improved
algorithm
max # primary improved from 1 blocking miss improved from 1 blocking miss
misses outstanding
max # secondary improved from O improved from O
misses outstanding
2.25.1 FLDTLB
The FLD Translation Lookaside Buffer (FLDTLB) is a fully associative TLB with 32 entries
per thread that exists to speed access to the FLD. As discussed in the earlier FLD
section of this document, every FLD entry is associated with an FLDTLB entry. All FLD
accesses require an FLDTLB translation. The FLDTLB is not a complete TLB in the
architectural sense because it does not contain all of the required architected values.
Therefore, when the FLDTLB is used to do a lookup in the FLD, the translation must also
be looked up in the DTB, a full architectural TLB. If the translation does not exist in the
DTB, the results of the FLD lookup cannot be used.
22511 Non-blocking FLDTLB Misses

Intel® Itanium® Processor 9500 Series

On previous processors, FLDTLB misses were blocking. On the processor they are non-
blocking. Operations that miss the FLDTLB and hit in the DTB are immediately sent to
the MLD but are not able to fill the FLD. Typically, if such an operation is of the type that

29
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2.25.1.2

2.25.1.3

2.25.1.4

30

would have filled the FLD (FLDCANFILL) and there is no DTB->FLDTLB transfer in
progress, a new DTB->FLDTLB transfer will be initiated for the corresponding
translation. The DTB->FLDTLB transfer process occurs in the background and in the
common case (no PA purge) attempts not to interrupt the progress of the main
pipeline. A cycle where nothing is inserted in the M-pipes is required to complete the
transfer, but the transfer waits up to 16 cycles before requesting MO and M1 in an
attempt to use a cycle in which they happen to be unused. The theory is that there isn’t
typically much benefit in interrupting the main pipe if it is making progress. The reason
the transfer waits only 16 cycles is that a pending transfer can block other things (e.g.
the DPFQ) that shouldn’t be held off indefinitely. Thread switches cause DTB->FLDTLB
transfers to be aborted.

FLDTLB inserts

FLDTLB inserts occur only as DTB->FLDTLB transfers. FLDTLB inserts do not occur as
part of DTB inserts. DTB->FLDTLB transfers are initiated when all the following are
true:

= FLDCANFILL operation reaches DET stage

= operation is a virtual mode operation

= data access hint says allocate in FLD

* operation misses in FLDTLB

= operation hits in DTB

= DTB translation attributes: page present and memory attribute of WB

= there is no other outstanding DTB->FLDTLB transfer in progress
An outstanding DTB->FLDTLB transfer is cancelled when any of the following events
occur:

= anything causes an entry to be purged or replaced in the DTB

* a back-end thread switch occurs

FLDTLB Replacement

The replacement algorithm is per-thread perfect LRU.

Virtual Aliasing

As with previous Intel Itanium processors, the FLD cannot handle an FLDWR that hits
two virtually aliased (same PA different VA) cache lines because doing so would require
the ability for a single store to simultaneously write to two different locations in the
cache. To prevent this from happening, before inserting a new translation into the
FLDTLB, any translations that are virtually aliased with the new translation are purged.
A new translation (for example, 16K pages) could overlap with as many as 4 existing
translations (for example, 4K pages) in the FLDTLB.

Due to the lack of physical tags, the processor FLD has a further restriction in that it
doesn’t allow locations in the FLD to be virtually aliased with any FLDWR. To prevent
this from happening, stores that miss the FLDTLB purge any virtually aliased
translations in the FLDTLB. An FLDWR could overlap with at most one existing
translation in the FLDTLB. Any FLDLD that hits in the FLD after an FLDWR that needs to
purge the FLDTLB but before the purge is completed will be WB2 replayed. If the
FLDTLB missing FLDWR and FLD hitting FLDLD occur in the same cycle, a WB2 replay is
triggered if comparing VA[11:0] and sizes suggest these two operations may overlap.
(PMU event: CYC_BE_WB2_REPLAY.STORE_ALIAS)
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2.2.5.2

2.25.2.1

2.25.2.2

2.2.5.2.3

2.2.5.2.4

DTB

The Data TLB (DTB) is a fully associative 128-entry per thread TLB. Entries O to 63 can
be used as TR entries. Any entry not being used as a TR entry can be used as a TC
entry. DTB misses can trigger the Hardware Page Walker (HPW). On previous Intel
Itanium processors, a DTB miss that triggered a hardware page walk was always
blocking. In other words, it stalled the main pipeline. On the processor, DTB misses that
trigger hardware page walks can be either blocking or non-blocking. A DTB miss that
triggers a hardware page walk will be non-blocking if all of the following conditions hold
true and blocking otherwise:

= operation is a control speculative load, Ifetch, or hardware data prefetch
= spontaneous deferral is allowed
= data access is hinted PIPE_DEFER

Blocking DTB Miss

(PMU events: CYC_BE_WB2_REPLAY.BLK_HPW, CYC_BE_IBD_STALL.HPW)

Non-blocking DTB Miss

When an Ifetch triggers a non-blocking walk, it is placed in the Data Prefetch Queue
(DPFQ - see data prefetching section) and then re-issued, if possible, when the walk is
completed. When a Id.s triggers a non-blocking walk, it is deferred (NATed). In this
case, NATed register value is available in the bypass network in WB2. The more
common scenario where the integer speculative load missed the FLD, and unusual
scenario where the integer speculative load hit in the FLD (and missed in the DTB).

(PMU events: CYC_BE_EXE_REPLAY_GR_LOAD_RAW,
CYC_BE_WB2_REPLAY.NAT_HZRD)

Pre-validation With Respect to Region Register

The DTB is pre-validated with respect to the region registers. This means that each DTB
entry is associated with a particular region register and the Region Identifier (RID) in
that region register. If a new RID is written into a region register, then all of the entries
associated with that RID and region register become invalid. However, if such an entry
is still in the DTB when the original RID is written back to the same region register, then
the entry becomes valid again.

Replacement Algorithm

The replacement algorithm for the DTB has been improved relative to previous Intel
Itanium processors. The 128 DTB locations for each thread are split up into four 32
entry quadrants. Quadrant n includes location n, n +4, n+8, etc. to n+124. Each
quadrant consists of half TR/TC entries and half TC only entries. Inserts rotate through
the quadrants such that following an insert to quadrant O, the next insert will be to
quadrant 1, and so forth. Entries will be chosen for replacement in the following priority
order:

« Use the Dtb entry location specified by the itr.d or ldat commands.
= Choose the first invalid entry in the following order: 64-127, 0-63.
= The first non TR location in the current quadrant without a currently valid RID entry

« The first non TR location in the current quad with the Recently Used (RU) bit equal
to zero.
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2.2.5.3

2.253.1

2.2.5.3.2

2.2.6

2.2.6.1

32

The RU bit for each entry starts off at 0, and whenever a location is inserted to or is
used by a translation, the corresponding RU bit is set to 1. If all the non-TR RU bits for
the quadrant are 1's, the RU bits are all forced to O’s.

Hardware Page Walker (HPW)

The Hardware Page Walker (HPW) can be used on a TLB miss (DTB on the data side) to
look up a translation in the Virtual Hashed Page Table (VHPT). Previous processors
could only do a single hardware page walk at a time, and data side hardware page walk
always blocked the main pipeline. Both of these constraints have been removed on the
processor. See the previous DTB section for a discussion of servicing DTB misses in a
non-blocking manner.

Concurrent Walks

Any two walks from the following list can be executed concurrently:
* 1 i-walk (from either thread)
= 1 blocking d-walk from thread O
« 1 blocking d-walk from thread 1
« 1 non-blocking d-walk from either thread
A Non-blocking d-walk is dropped whenever another d-walk is requested before it

begins execution. New d-walk requests are coalesced with outstanding non-blocking d-
walks to the same V[63:12] and thread.

Thread Switching

Hardware page walks are long latency events and thus can affect and interact with
thread switching in the following ways:

= Blocking d-walk requests hold off thread switching only until VHPT load enters MLD
0Zz0Q.

= A switch away event occurs when a blocking VHPT load exceeds a certain latency.
= A switch back event occurs when a blocking VHPT load completes

e Off thread VHPT loads can occur without a thread switch.

Architectural Ordering

Acquire Semantics

On the processor, acquire semantics are handled cooperatively by the FLD and MLD.
The FLD prevents servicing FLD and ALAT check hits whenever there is an older
operation with acquire semantics that hasn’t reached global visibility by replaying FLD
hits, Id.c’s, and chk.a’s (PMU events: CYC_BE_WB2_REPLAY.LOAD_ACQ,
CYC_BE_DET_REPLAY.LOAD_ACQ, CYC_BE_IBD_STALL.ACQ).

The MLD doesn’t allow operations from same thread as an older operation with acquire
semantics to issue from the OZQ until the older acquire operation has issued and has
hit in the MLD or is no longer in the MLDFAB or SMQ. An exception to this rule is that
Ifetches that haven’t requested an FLD fill are allowed to forgo the MLD acquire
semantics restrictions. In an effort to improve performance in the presence of
operations with acquire semantics, hardware will generate prefetches (via the DPFQ)
for all loads sent to the MLD while an acquire operation is outstanding. These
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prefetches do not request FLD fills, and so, if they can make it into the MLD OZQ before
it fills up due to a long latency acquire operation, they can issue regardless of the state
of the acquire operation.

2.2.6.2 Release Semantics
An operation with release semantics will not issue from OZQ until it is oldest in OZQ
(from both threads) and all release dependencies from already issued operations have
been met. This does imply that a long latency release operation from one thread can
hold up a release operation from the other thread. In an effort to improve performance
in the presence of stores with release semantics, hardware will generate a prefetch (via
the DPFQ) for every st.rel that goes down the pipeline. Such a prefetch is not affected
by release semantics, and so, if it can make it into the MLD OZQ while a long latency
release operation is waiting to be issued, it can issue and potentially improve the
performance of the release operation.
2.2.6.3 Memory Fences
Memory fence semantics is a combination of acquire and release semantics. Therefore,
operations with memory fence semantics are handled by combining the acquire and
release behaviors already discussed. The following restrictions are also implemented
for memory fences:
= Operations with memory fence semantics do not allow Ifetches to ignore their
acquire behaviors. This implementation restriction is architecturally required by
mf.a but is not required for mf.
= Operations with memory fence semantics wait for all outstanding memory
accesses, including Ifetches and operations from the other thread, to complete
before they become globally visible. This implementation restriction (called a
"super release") is not architecturally required.
= The semantic restrictions for mf.a are applied across both threads. This
implementation restriction is not architecturally required.
2.2.7 Execution Latencies
The following tables show the processor core instruction execution latencies. Separate
tables are presented for GRs, FRs, BRs, PRs, ARs and CRs.
Table 2-12. Integer Execution Latencies (Sheet 1 of 2)
Consumer
(across) Producer 1ALU ICMP | ISHFT M'\(IJAL PSMU B,L-_II—_C PSAD IMTUL ICHK II\_I/I_8V MARDD S-I.I—_iA
(down)
IALU 1 1 1 1 1 1 1 1 1 1 1 1
ISHFT 1 1 1 1 1 1 1 1 1 1 2 1
MMALU 2 2 2 2 2 2 2 2 2 2 3 2
PSMU 2 2 2 2 2 2 2 2 2 2 3 2
BITCNT 2 2 2 2 2 2 2 2 2 2 3 2
PSAD 2 2 2 2 2 2 2 2 2 2 3 2
IMULT 4 4 4 4 4 4 4 4 4 4 5 4
IMOVFM 2 2 2 2 2 2 2 2 2 2 3 2
FLDHIT 1 1 1 2 2 2 2 2 1 1 2 1
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Table 2-12. Integer Execution Latencies (Sheet 2 of 2)
(acr((:)‘s)g)sglr’?)?jijcer IALU | ICMP | ISHFT M'\GAL PSMU B,LTTC PSAD 'MTUL ICHK ”\48\/ MARDD SiiA
(down)
FLDLDFILLHIT 2 2 2 2 2 2 2 2 2 2 2 2
MLDRTN M M M M M M+1
DCSRTN c c c c+1 Cc+1 Cc+1 Cc+1 Cc+1 c c Cc+1 c
Table 2-13. Floating-Point Execution Latencies
Cg:’;;?gg: Eggwﬁi) FMAC | FMISC | FPST | GETF
FMAC 6 6 6 6
FMISC 6 6 6 6
SETF o+ 9+ 9+ o+
MLDRTN M+1 M+1 M+1 M+1
Table 2-14. Predicate Execution Latencies
Consumer (across) NONB BROP MOVF
Producer (down) RQP MPR
INTPREDWR 1 0 1
FPPREDWR 3 2 3
MODSCHBR 1 1 1
MOVTOPR 2 0 1
Table 2-15. Branch Execution Latencies
Corsmer Geres | b | Yo
BRCALL 1 1
MOVTOBR 0 1
Table 2-16. Instruction Type Details (Sheet 1 of 2)
Inst Type Instructions
1ALU Al-5, M2-3, M5, M7-8, M10, M12, M14-15, M31(unat,rnat), 129(zxt)
ICMP A6-8, 116-17
MMALU A9-10,12(pmin,pmax),M13-15(A-ports),126(pfs)
ISHFT 110-15,129(sxt)
PSMU 13-8,12(mix,pack,unpack)
BITCNT 19,129(czx)
PSAD 12(psad)
IMULT 11,12(mpy,pmpy)
ICHK 120,M20
IMOVTO 121,123,126
IMOVFM 122,125,128
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Table 2-16.

2.3

2.3.1

2.3.1.1

Intel® Itanium® Processor 9500 Series

Instruction Type Details (Sheet 2 of 2)

intel.

Inst Type Instructions
MADDR M1-12, M13-15(M-ports), M16-17, M28, M38-40, M42-43, M45-47, M51-52
STDATA M4-5, M16, M18, M29, M32, M35, M38, M41-42, M45, M1003
FLDHIT M1-3
FLDLDFILLHIT M1-3(ld.fill)

MLDRTN (GR)

M1-3,M16-17,M19,M31(csd,ccv);

MLDRTN (FR)

M6-8, M11-12

DCSRTN M31(excluding csd, ccv, unat, rnat), M33-34, M36, M38-39, M43, M46, M1002
FMAC F1-2, F10-11
FMISC F3-9

FPST M9-10

GETF M19

SETF M18

INTPREDWR A6-8, 116-17, 130
FPPREDWR F4-7

MODSCHBR B1-2

MOVTOPR 123-24

MOVFMPR 125

BRCALL B3, B5, X4
MOVTOBR 121

INDBR B4, B5
MOVFMBR 122

Data Access Hints, Fetch, Dispersal and Execution

Data Access Hints

Hint Architecture Overview

Up until now, loads and stores have had only a few bits in the instruction encoding to

hint some attributes such as temporal locality and expected MESI state behavior. There
are many other useful attributes associated with memory operations that could

potentially be communicated by software in order to optimize the handling of those

operations by the hardware. Towards this end the following extensions to the
Instruction Set Architecture (ISA) have been made:

= All loads, stores, Ifetches, and semaphore instructions specify a dynamic DAHR

instead of a static hint, using the two encoding bits formerly used for the

temporalness hints. Each of the 8 DAHRs can specify a unique set of memory

attributes, including such things as speculation, prefetching and temporal hints. An
additional “h” bit is defined in the encoding of Ifetch instructions and all loads and

stores except the FP load pair, register update, and immediate update forms,

allowing those instructions to reference any of the 8 DAHRs. Semaphore

instructions also do not have the "h" bit. The instructions without the "h" bit can
only index DAHRs 0-3. Hardware sets the default DAHR values such that they

mimic legacy hint bit behavior.
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= A new instruction, mov-to-DAHR, allows software to specify a set of attribute
values to use for subsequent memory operations (in the current procedure) which
are tagged with that particular DAHR. This new instruction uses a formerly-unused
encoding within the hint opcode space, so it is ignored by legacy processors. The
mov-to-DAHR instruction has single cycle latency on the processor.

* Another new instruction, mov-from-DAHR, allows software to read the current
contents of a DAHR. In general, however, software is expected to remember the
values it wrote into the DAHRs, and to simply (re)write a DAHR before an important
code sequence (rather than first reading the DAHR to see if it needs to be
changed). Thus, the mov-from-DAHR operation is not optimized on the processor,
and may result in many replay cycles.

= A Data Access Hint Stack (DAHS) preserves modified DAHR values across
procedure calls and returns. Any br.call instruction or interruption will allocate a
new stack frame, and set all of the DAHRs in that new frame to default values. Any
br.ret or rfi instruction will throw away the current stack frame, and return to the
previous frame. The processor implements 7 entries in its DAHS. If the stack
overflows (as a result of nesting more than 7 procedure calls), the oldest stack
frame is lost, and the DAHRs will revert to their default values when control
eventually returns to its associated procedure. The DAHRs are also reinitialized to
default values, and the entire DAHS is cleared, on a context switch (indicated by a
mov-to-BSPSTORE instruction).

In the processor implementation of this hint architecture, the following will cause 7
cycle WB2 replays:

= a mov-to-DAHR and a DAHS push followed by a DAHS pop in a 6 cycle window
= multiple DAHS pushes followed by a DAHS pop in a 6 cycle window

= a mov-to-BSPSTORE instruction followed by a mov-to-DAHR or a DAHS pop in a 6
cycle window

Hint Definitions

The architecture supports up to 16 hint bits per DAHR. The processor implements 7
independent hint fields, using 11 of the available bits. The remaining hint bits are
reserved: they should always be set to zero in mov-to-DAHR instructions to allow for
additional capabilities in future products. It should be noted that while hardware strives
to follow these hints as much as possible, there may be cases where the hints are
ignored. The definitions of the implemented fields and their corresponding values are
the following:

e FLD_LOC (bits [1:0])
These hint bits affect the allocation of a line into the first-level data (FLD) cache.

— FLD_NORMAL (value = 0)
Meaning: This hint is really just the absence of the two other FLD_LOCALITY
hints.
HW behavior: FLD missing integer loads and data prefetches with this hint
typically trigger FLD fills, and such fills are initially marked recently used (RU).

— FLD_NRU (value = 1)
Meaning: This hint tells hardware that the hinted access is accessing a line that
is less likely than other cache lines to be re-used during its lifetime in the FLD.
HW behavior: Whether this line is already in the FLD or being filled into the FLD
because of the hinted access, the line is marked not recently used (NRU)
instead of recently used (RU).

Intel® Itanium® Processor 9500 Series
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PMU Events: FLD_LINE_DEMOTE counts the demotion of a cache lines to not-
recently-used due to this hint. FLD_FILL_NRU counts the allocation to not-
recently-used due to this hint.

— FLD_NO_ALLOCATE (value = 2)
Meaning: This hint tells the hardware that the hinted access should not trigger
an FLD fill.
HW behavior: Accesses with this hint do not trigger FLD fills.
PMU Events: FLD_HINT_NOALLOC counts the number of times this hint
prevents an FLD fill request.

- MLD_LOC (bits [3:2])
These hint bits affect the allocation of a line into the mid-level data (MLD) cache.

— MLD_NORMAL (value = 0)
Meaning: This hint is really just the absence of the two other MLD_LOCALITY
hints.
HW behavior: MLD misses with this hint typically trigger MLD fills, and such fills
are initially marked recently used (RU).

— MLD_NRU (value = 1)
Meaning: This hint tells hardware that cache lines filled to the MLD as a result
of the hinted access are less likely to be re-used during their lifetimes in the
MLD than other cache lines filled to the MLD.
HW behavior: A cache line filled to the MLD by such an access is initially
marked not recently used (NRU) instead of recently used (RU). Subsequent
accesses to that line update it to the RU state.
PMU Events: MLD_HINT_NRU counts the allocation to not-recently-used due to
this hint.

— MLD_NO_ALLOCATE (value = 2)
Meaning: This hint tells hardware that the hinted access should not trigger an
MLD fill.
HW behavior: Accesses with this hint do not trigger MLD fills.
PMU Events: MLD_HINT_NOALLOC counts the number of times this hint
prevents an MLD fill.

e LLC_LOC (bit [4])
These hint bits affect the allocation of a line into the last-level cache (LLC).

— LLC_NORMAL (value = 0)
Meaning: This hint is really just the absence of the LLC_LOCALITY.ALLOC_NRU
hint.
HW behavior: LLC misses with this hint typically trigger LLC fills, and such fills
are initially marked recently used (RU). Subsequent accesses to that line leave
the line in the RU state.

— LLC_NRU (value = 1)
Meaning: This hint tells hardware that cache lines filled to the LLC as a result of
the hinted access are less likely to be re-used during their lifetimes in the LLC
than other cache lines filled to the LLC.
HW behavior: A cache line filled to the LLC by such an access is marked not
recently used (RU) instead of recently used (RU).
PMU Events: RIL_REQ_HINT_NRU counts requests which allocate to not-
recently-used due to this hint.

- PF (bits [6:5])
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These hint bits affect which hardware data prefetchers can be triggered by an
operation. Please see Section 2.3.4.1.3 for a description of all the types of the
processor’s hardware data prefetchers.

PF_NORMAL(value = 0)
Meaning: This hint is really the absence of software hinted hardware
prefetching restrictions.

HW behavior: All hardware prefetchers may use this operation as a trigger for
more prefetches. In practice, various prefetchers ignore various operations and
only trigger prefetches subject to their algorithms.

PF_NO_FLD (value = 1)

Meaning: Any hardware prefetch mechanisms that prefetch into the FLD and
can generate multiple cache lines of prefetches from a single access should
ignore this access.

HW behavior: The FLD sequential (neighbor line) prefetcher will ignore
accesses with this hint.

PF_NO_MLD (value = 2)

Meaning: Any hardware prefetch mechanisms that prefetch into the FLD or
MLD and can generate multiple cache lines of prefetches from a single access
should ignore this access.

HW behavior: The FLD sequential (neighbor line) prefetcher and the MLD
sequential prefetcher will ignore accesses with this hint.

PF_NONE (value = 3)

Meaning: Any hardware prefetch mechanisms that prefetch into the FLD or
MLD and can generate multiple cache lines of prefetches from a single access
and any buddy line prefetchers should ignore this access.

HW behavior: The FLD sequential (neighbor line) prefetcher, the MLD
sequential prefetcher, and the MLD buddy line prefetcher will ignore accesses
with this hint.

PMU Events: FLD_HINT_NO_MULTI_HWPREF counts the number of times any
setting of this hint (NO_FLD_MULTI, NO_FLD_MLD_MULTI, or
NO_FLD_MLD_MULTI_NOBUDDY) prevents an operation from triggering an FLD
sequential (neighbor line) hardware data prefetch. Similarly,
MLD_HINT_NO_BUDDY counts the number of times any setting of this hint
prevents an operation from triggering an MLD buddy line prefetch.

- PF_DROP (bits [8:7])
These hint bits cause data prefetches (Ifetches and hardware data prefetches) to be
dropped when various events occur.

PFD_NORMAL(value = 0)

Meaning: This hint is really the absence of the other PF_DROP hints.

HW behavior: The Ifetch is carried to completion (short of triggering a fault if
not Ifetch.fault).

PFD_TLB(value = 1)

Meaning: This Ifetch should be dropped if it doesn’t hit in a data TLBs.

HW behavior: This Ifetch is dropped if it misses the DTB.

PMU Events: PREF_DROP.DTLB_MISS counts the number of times this hint
causes a prefetch to be dropped due to a DTB miss.

PFD_TLB_MLD (value = 2)

Meaning: This Ifetch should be dropped if it doesn’t hit in any data TLB or it
misses the MLD.

HW behavior: This Ifetch is dropped if it misses the DTB or the MLD.

Intel® Itanium® Processor 9500 Series
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PMU Events: In addition to the PMU event for the ON_DTB_MISS setting, the
PMU event MLD_HINT_PREF_DROP that counts the number of times this hint
causes a prefetch to be dropped due to an MLD miss.

— PFD_ANY (value = 3)
Meaning: This Ifetch should be dropped if anything happens that would
increase the cost of this Ifetch above the minimum possible cost.
HW behavior: This Ifetch is dropped if it misses in any data TLB, or if it misses
the MLD, or if there is some risk of overflowing the data prefetch queue.
PMU Events: In addition to the PMU events for the ON_DTB_MLD_MISS setting,
the PMU event PREF_DROP.FLDTLB_MISS) that counts the number of times this
hint causes a prefetch to be dropped due to an FLDTLB miss.

- PIPE(bit [9])

— PIPE_DEFER (value = 0)
Meaning: Lfetches with this hint should not block the pipeline while fetching
their TLB translations, and speculative loads with this hint should
spontaneously defer when when waiting for some long latency operation.
HW behavior: An Ifetch with this hint that misses the DTB will initiate a
hardware page walk and be placed in the data prefetch queue. A speculative
load that misses the DTB or MLD will spontaneously defer (if architecturally
allowed).
PMU Events: MLD_HINT_DEFER counts the number of times a Id.s is
spontaneously deferred due to an MLD miss.

— PIPE_BLOCK (value = 1)
Meaning: Lfetches with this hint should block the pipeline until they are done
fetching their TLB translations, and speculative loads with this hint should block
uses of their target register until they have completed their fetch.
HW behavior: An Ifetch with this hint that misses the DTB will block the pipeline
until its hardware page walk is completed. The pipeline will be blocked on the
use of a speculative load with this hint that misses the DTB or the MLD until the
speculative load returns a value to the target register. These behaviors were
the default behavior on previous Intel Itanium processors, and this hint is a
way to force these behaviors on the processor. An Ifetch or speculative load
without this hint may not block the pipeline, and the speculative load may be
spontaneously NATed on a DTB or MLD miss - subject to architectural
restrictions for spontaneous deferral.
PMU Events: DTLB_HPWHINT_BLK counts the number of times this hint causes
a ld.s not to be spontaneously deferred due to a DTB miss.

- BIAS (bit [10])

— BIAS_EXCL
Meaning: If hardware has a choice of getting a line in either the shared or
exclusive MESI states, it should choose exclusive.

HW behavior: A DREAD access with this hint that causes an LLC fill will fill the
line to the exclusive (E) MESI state if the line doesn’t exist in any other cache.

— BIAS_SHARED
Meaning: If hardware has a choice of getting a line in either the shared or
exclusive MESI states, it should choose shared.
HW behavior: A DREAD access with this hint that causes an LLC fill will fill the
line to the shared (S) MESI state.
PMU Events: RIL_REQ_REF_DATA.WB_CRD counts the number of times this
hint causes an LLC fill to the S state instead of the E state.
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2.3.1.3 PMU DEAR Support for Data Access Hints

In addition to the PMU support via the hint related events mentioned in the previous
section, the Data cache EAR captures the hint values that were associated with the
captured access. This allows a dynamic optimizer to know for sure what hint values
various accesses are actually using. This can be useful both in figuring out what the
opportunities are for changing hint values and for verifying which accesses are affected
by a change in hint values.

2.3.1.4 Backwards Compatibility of DAHR Hints with Temporal Hints

Two of the DAHR index bits were previously defined to be temporal hint bits. The
processor will interpret legacy code temporal hint usage by using the default hint
values of the associated DAHRs. The temporal hint to associated DAHR mappings are
shown in Table 2-18. The default DAHR values are shown in Table 2-19. The way that
previous Intel Itanium processors will interpret DAHRSs is shown in Table 2-18.

Table 2-17. Legacy Code Temporal Hint Mapping to DAHRs by the Processor

Temporal Hint DAHR
none DAHRO
ntl DAHR1
nt2 DAHR2
nta DAHR3

Table 2-18. DAHR Mapping to Temporal Hints by Previous Intel Itanium Processors

DAHR Temporal HInt

DAHRO none

DAHR1 ntl

DAHR2 nt2

DAHR3 nta

DAHR4 none

DAHR5 ntl

DAHR6 nt2

DAHR7 nta

Table 2-19. Default DAHR Values

DAHR fld_loc mid_loc lic_loc pf pf_drop pipe bias
DAHRO fld_normal mld_normal llc_normal pf_normal pfd_normal pipe_block bias_excl
DAHR1 fld_no_allocate mid_normal lic_normal pf_no_fld pfd_normal pipe_block bias_excl
DAHR2 fld_no_allocate mlid_nru lic_normal pf_no_fld pfd_normal pipe_block bias_excl
DAHR3 fld_no_allocate mid_normal lic_nru pfd_no_fld pfd_normal pipe_block bias_excl
DAHR4 fld_normal mld_normal llc_normal pf_normal pfd_normal pipe_defer bias_excl
DAHR5 fld_no_allocate mld_normal lic_normal pf_no_fld pfd_normal pipe_defer bias_excl
DAHR6 fld_no_allocate mld_no_allocate lic_normal pf_no_mid pfd_normal pipe_defer bias_excl
DAHR7 fld_no_allocate mld_no_allocate lic_nru pf_none pfd_normal pipe_defer bias_excl
40 Intel® Itanium® Processor 9500 Series
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2.3.2 Instruction Fetch
2.3.2.1 Intel Itanium Processor 9300 Series Processor Differences
The following table enumerates key differences between Intel Itanium Processor 9500
Series and Intel Itanium Processor 9300 Series.
Table 2-20. Intel Itanium Processor 9300 Series Differences
Intel Itanium Processor 9500 Intel Itanium Processor 9300
Series Series
Branch misprediction penalty 10 cycles 6 cycles
MLI (512k) nominal access 9 cycles 6 cycles
time
MLITLB (128 entry shared) 3 cycles 2 cycles
access time
MLI to LLC fetch size 2 64B cache lines 1 128B cache line
O-bubble resteers 4 short IP-relative branches Any short IP-relative branch in the
FLI
1-bubble resteers Any short IP-relative branch in the br.ret
FLI, br.ret
2-bubble resteers NA Non-return indirect branch
3-bubble resteers Non-return indirect branch, long NA
branch
Branch predictor Long branch (brl) target predictor No long branch support
added
2.3.2.2 Memory Hierarchy
Table 2-21. Instruction Cache Characteristics
FLI MLI
Size 16k 512k
Latency 1 Cycle 9 Cycles
Line Size 64B 128B
Associativity 4-way 8-way
Shared Across Threads? Yes Yes

Number of Ports

2 read/1 write

1 read/1 write

Max # of misses 16 64B (8 entries restricted to MLI 8 128B
outstanding buddy line)

Fill Bandwidth 32B/cycle 32B/cycle
Address Ordering 32B 32B
Granularity

Address Type Pre-validated Physical

The FLI on the processor is nearly identical to the FLI on Intel Itanium Processor 9300
Series. Both use prevalidation and consequently an FLI TLB page invalidation will
invalidate all FLI instruction data associated with the invalidated page. On Intel Itanium
Processor 9300 Series, virtual address page aliasing, even between threads, would
cause FLI TLB page invalidation. Therefore, two threads accessing the same physical
page in memory would invalidate each others FLI cache data and FLITLB on a 4k page
size granularity. On the processor, virtual address page aliasing between threads will
install a TLB entry per thread into the FLI TLB. Therefore, two threads executing out of
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the same physical address space will not cause FLI TLB and FLI victimizations.
However, the instruction data will be duplicated in the FLI in this scenario. In addition,
the default FLI replacement policy is to mark both demand and prefetch fills as most
recently used. Another key difference is that the processor no longer has an ISB. On
the processor, fills from MLI are immediately filled into the FLI.

Instruction Prefetch

Instruction prefetching is controlled primarily by special prefetching hint instructions,
instruction completer hints on branch instructions, and move to BR instructions. The
only exception to this is “next line” prefetching, which is controlled by the hardware.
With "next line" prefetching, an FLI miss to an address with IP[5]=0 will cause a 64B
miss to the cache line aligned with their current IP address as well as to IP[5]=1. That
is, the frontend will fetch the 64B "buddy" address of the current miss. If the miss
address is to the "buddy", then only one 64B miss will be issued.

The following table enumerates how software can initiate instruction prefetching.

Instruction Prefetching Instructions

Instruction Action

mov br[N] = r[N] Prefetch 8 bundles. Target address is specified by the branch register

br.few target

No action taken. Next line prefetching is possible if IP[5]=0

br.many target

Engage the streaming prefetch engine. Fetch 32 bundles ahead of the 64B cache line pointed to by
target. The prefetch target starts at the next cache line after the target address.

brp.few target

Prefetch 8 bundles at the specified target address. Instruction treated as NOP by execution

stages.

brp.many target Prefetch 16 bundles at the specified target address. Instruction treated as NOP by execution
stages.

brp.exit target, count Prefetch count bundles at specified target address. Instruction treated as NOP by execution
stages.

2.3.2.4

2.3.2.5
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The instruction prefetcher will terminate prematurely if a control flow change is
detected at that current IP, not at the prefetch IP. This control flow change can occur
either due to a predicted taken branch or a backend resteer. On a thread switch,
instruction prefetching is halted and saved on the thread that is going inactive, and the
instruction prefetcher restores prior state and continues prefetching on the thread that
is becoming the active thread if the instruction prefetcher was previously active.

Instruction Prefetch - Prefetch Structures

= PVAB (prefetch virtual address buffer):
The PVAB is an 8-entry buffer used to store prefetch requests from brp and mov-br
instructions. The PVAB is needed because the front end can see more brp/mov to
br instructions per clock than can be issued.

= SPE (streaming prefetch engine):
The SPE spins on a sequence of prefetch addresses for large basic blocks.

Instruction Prefetch -brp prefetches

Only brp instructions that are in slot 2 of a bundle are recognized by the prefetch logic.
The PVAB has two write ports for storing prefetch information. Since it is possible to
have a bundle pair with brp instructions in slot 2 of both bundles and have a mov-br
executing in the DET stage at the same time, one of the brp instructions will be
dropped. In this case, the brp in bundle 1 will be dropped.
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Table 2-23. brp and movbr:

2.3.2.6

2.3.2.7

Contention for PVAB Write Ports

brp instruction
on slot 2 of
bundle 0 (Brp0O)

brp instruction
of slot 2 of
bundle 1 (Brpl)

MovBr in DET?
(MovBr)

PVAB Inserts

y n n BrpO —
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>

y MovBr —

BrpO Brpl
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BrpO MovBr
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BrpO MovBr
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Instruction Prefetch - Prefetch Cancellation

Prefetches generate extra memory traffic. To minimize unnecessary prefetches, the
processor may cancel certain prefetches that are in the PVAB or in the prefetch
pipeline. Prefetches are not sent to the MLI if they result in an FLI hit. Prefetches are
also canceled on FLITLB misses. Additionally, the branch hints may specify a trace
vector (.tk.tk, .nt.nt, .dc.dc etc). The trace vector is used to cancel a prefetch in the
PVAB or any of the prefetch pipestages if the execution trace does not match the trace
vector specified in the branch hints.

The trace vector is implemented as a 4-bit shift register with aging vector. The trace
vector is a two bit vector corresponding to the direction the next two branches are to
be predicted before the prefetch becomes ready. The aging vector is a two bit vector
that indicates whether the corresponding trace bits have been checked (0O=not
checked, 1=checked). When both bits of the aging vector are 1, the prefetch is ready to
be issued.

Every time a branch is executed in the front end (FET stage), the trace vector LSB for
all PVAB entries that have a 0 in the aging vector LSB are compared to the branch
prediction. If they match, then both the aging and trace vectors are shifted to the right,
and a '1 is shifted in from the left into the aging vector. For entries that have a "dc" hint
for any of the bits in the trace vector, the aging bit is set to a '1 to indicate that the
branch has been checked. The streaming prefetch engine also supports prefetch
cancellation based on the prefetch vector for brp.many prefetches.

Instruction Prefetch - Guidelines

Efficient use of the instruction prefetcher can reduce instruction cache miss penalties.
However, the danger of over prefetching is FLI and ideally to a lesser extent, MLI cache
pollution.

= Guideline: Use br.many instead of br.few unless you know that the target code of
the branch is going branch again in less than 8 bundles for a branch target with
IP[5]=0 or 4 bundles with a branch target with IP[5]=1.

= Guideline: Brp instructions are Ifetch’s for the i-side. Brp instructions can be used
to reduce i-cache miss penalties. However, only i-cache misses that cause empty
cycles in the backend reduce performance. In particular, i-cache misses after
branch mispredictions are always exposed, and this is one area where brp
instructions can be utilized.
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« .dptk vs .sptk
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Dynamic branches have better prediction accuracy at the expense of extra FET
replays on tight loops during the first few iterations. Static branches do not incur
FET replay penalties, but prediction accuracy suffers in many cases. Static branches
can not detect patterns or loop exit conditions on small trip count loops.

Guideline: Use .dptk except on unconditionals where .sptk should be used.

Multiway Branch Bundles

Perfect branch history is only stored in the FLI BHT for up to two branches per
bundle. BBB templates use an encoded history that is imperfect has several
detrimental effects.

Guideline: Avoid using BBB bundles

MLIBHT/MLB Oversubscription

Once a branch is evicted from the FLI, we store its branch history in the second
level branch history table (MLB). The MLB has a history capacity of approximately
12k entries. Each entry has enough storage for two branches per bundle pair or one
BBB per bundle pair.

Guideline: For branching bundle pairs whose prediction requires local branch
history for prediction accuracy, try to keep branch density down to at most two
branches per bundle pair.

Guideline: If a particular branch is unconditional or only expected to be seen once
in > ~12k-24k branches, use the .clr hint to free up MLB resources. The MLB
aliases when there are capacity issues.

= Short vs Long IP-relative target prediction

Table 2-24. Short versus Long IP-relative Penalties and Target Accuracy

Resteer Penalty Target Accuracy

Short IP-relative 0-1 cycles 21b immediate offset, only VA[40:4]

are predicted. If IP+offset_21b causes
a carry out past VA[40], this branch
will always mispredict

Long IP-relative 3 cycles Perfect target prediction

Guideline: Use brl if IP-rel target calculation will be mispredicted using a short IP-
rel branch.

Non-return indirect branches

While trigger prediction accuracy is typically very high, target prediction accuracy is
very low. The FE reads the branch register file when the branch is in the FDC
pipestage. This requires a large distance in cycles between a mov-to-br and non-
return indirect branch. Backend pipeline dispersal stalls and replays can cause the
required distance to be increase. It is important to note that this distance is greater
on the processor than for prior Itanium processors.

Guideline: Avoid non-return indirect branches by converting most common targets
to IP-rel. In addition, scatter branch register usage across all 8 branch registers.
This may increase the probability of a branch register already having the correct
target.
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2.3.2.9

2.3.3

Branch Prediction - Zero-Bubble Buffer

On prior Intel Itanium processors, short IP-relative resteers occurred without incurring
any penalty cycles. That is, taken IP-relative branches were able to resteer the
instruction pointer through a 0O-bubble resteer mechanism. The branch target buffer
(BTB) for these IP-relative branches on the processor now takes an additional cycle to
access. Therefore, short IP-relative resteers now occur with a 1-cycle penalty.

This additional bubble during an IP-relative resteer becomes material during tight loop
execution with high trip counts where the backend is not encountering any long latency
events. For this reason, a smaller faster BTB was added on the processor. The Zero-
Bubble Buffer (ZBB) is a small 4-entry BTB that caches the target for specific IP-
relative branches. The insertion, replacement, and invalidation of branches into the
ZBB is controlled explicitly by the hardware.

For a branch to be inserted into the ZBB, the branch needs to be:
e Short IP-relative
« Predicted 'taken’ for the current instruction fet

= Have a history of 'taken’ for the last 4 iterations

This last condition is accelerated for branches that are fetched into the FLI with either a
.sptk or .dptk completer.

When a new branch meets the criteria for insertion into the ZBB, the replacement
algorithm first looks for an invalid entry. If all ZBB entries are allocated, then an LRU is
used. The LRU is updated on ZBB hits and ZBB invalidates.

A branch is invalidated from the ZBB when it is mispredicted 'taken' by the ZBB. In
addition, capacity issues naturally cause branch replacement.

Register Fetch

The Register Fetch section of the core supports the register renaming and register
stack features of the Itanium architecture.

The Register Renaming (RNM) unit translates virtual integer, floating-point and
predicate register identifiers into physical register identifiers. On the processor, register
renaming is performed in the Front End (FE) of the pipeline on the 32-byte aligned
bundle pair delivered by instruction fetch. The renamed register identifiers are stored in
the Instruction Buffer Queues for direct dispersal to the register files and the execution
pipelines in the BE. A few corner cases are introduced due to register renaming being
performed on the fetched bundle pair in the FE as opposed to being performed in the
BE after instruction dispersal on “pre” Intel Itanium processor 9500 series Differences
processors:

= Multiple alloc instructions in bundle pair - since an alloc does not change BOF, it
does not affect renaming in the current cycle. The last alloc in program order will
simply update CFM.

= Multiple cover, clrrrb instructions in bundle pair - A cover or clrrrb in the even-
addressed bundle will cause instruction fetch to invalidate the odd-addressed
bundle in the bundle pair and present it to RNM again in the next cycle.

= Multiple bsw instructions in bundle pair - At most 2 bsw instructions can be present
in a bundle pair. The RNM unit tracks the state of PSR.bn on a per bundle basis and
thus accounts for this corner case.
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= Multiple branch instructions in bundle pair - Instruction fetch can only mark 1
branch instruction as a predicted taken branch in a bundle pair. If the predicted
taken branch is in the even-addressed bundle, the odd-addressed bundle is
invalidated and the instructions at the predicted taken target are delivered in
subsequent cycles.

The Register Stack Engine (RSE) manages the stacked register set and is responsible
for spilling and filling registers using RSE st and Id operations. The processor RSE, just
like all previous Intel Itanium processors, only operates in the Lazy Mode (AR.RSC=0),
that is, every memory reference issued by the RSE is deemed "mandatory" and needed
for program progress. The processor core does add an extra 32 general registers to
increase the number of stacked registers to 128 from 96 on the processor. This should
be completely invisible to software, in general, and lead to fewer pipeline stall cycles to
accomplish the injection of RSE spill and fill operations. The pipeline penalties
attributable to RSE operations are accounted by the CYC_BE_IBD_STALL.RSE_* PMU
events.

In order to reduce the data access penalties associated with RSE spill and fill
operations, the hardware data prefetcher on the processor does support data
prefetching initiated by various RSE operations. For further details, related to RSE-
based data prefetching, please refer to the Data Prefetching section.

Data Fetch

For examples, refer to Appendix C, “Data Fetch Software Optimization Opportunities
and Examples”.

The processor has a three level cache hierarchy. All cache levels are on chip. Data and
instructions are stored in separate caches at the first- and mid-level and in the same
cache at the last level. The caches that store data are called First Level Data (FLD)
cache, Mid Level Data (MLD) cache, and Last Level Cache (LLC). Unless stated
otherwise, all data cache hierarchy resources are dynamically shared by different
threads. The Last Level Cache (LLC) is also shared by all the cores on a die.

The processor includes both per-core caches and per-socket cache that is shared across
all the cores on the socket. The processor, like previous Itanium processors, has a
three-level cache hierarchy. The first two levels include separate | and D in each core.
The last-level cache (LLC) is inclusive of all of the cores caches. Some high-level details
of the cache hierarchy are shown in the table below.

Core Cache Hierarchy Summary

Cache

Line
Size

Data Type
Supported

WriteThrough

/ WriteBack Index

Size Ways Queueing Latency

FLD

Integer WT 16K 64B VA[11:6] | 8fills

FLI

NA 16k 64B 1 Dmnd +

7 Prefetch

Instruction VA[11:6]

MLD

Integer, FP wB 256K 64B PA[14:7] | 16 Ozqg/16

Fills

MLI

Instruction NA 512K 128B PA[15:7] | 8 requests
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Table 2-26. Data Cache Characteristics

FLD MLD LLC
size 16 KB 256 KB up to 32 MB shared
latency 1 cycle reads, 2 cycle writesP 8,9 cycles minimum read latency ~50 cycles nominally
for int / fp loads respectively®

line size 64 bytes 128 byte sectored tags, 64 byte 64 bytes
data

associativity 4-way 8-way 32 ways

number of ports

2 read/writed

2 read/write®

8 read/writef

replacement
algorithm

NRU

NRU

NRU

max # primary
misses outstanding

16 fill requests; otherwise
unlimited by FLD

at least 16 independent and 16
buddies?

12 misses / writebacks per slice

max # secondary
misses outstanding

unlimited by FLD

16 independent and 16 more to
the same 64 byte lines as first 16

LLC doesn’t see secondary
misses from a single core; cross-
core secondary misses have
complex queuing behaviors

write policy write through; no write allocate write back; write allocate write back; write allocate
store data n/a 32 16-byte entries 12 misses / writebacks per slice
buffering
fill bandwidth 64 bytes (1 line) per cycle 128 bytes (1 line and buddy) dependent on system and
every 5 cycles memory configuration (LLC isn’t
limiter)
alignment all alignments of 1, 2, 4, and 8 generally operations must not n/a

byte accesses that do not cross an
8 byte boundary are supported

cross 16 byte boundaries and
semaphore operations must be
naturally aligned; see MLD section
for more detail.

address ordering
granularity

overlap in VA[11:0]

overlap in VA[7:4]

entire cache lines

b FLD writes are speculative on the processor. See FLD section for more details..
¢ Minimum MLD hit latency is up from 5 on previous Intel Itanium processors, but average MLD hit latency is probably similar to
previous Intel Itanium processors.
There are some conflicts among stores but between loads and stores as on previous Intel Itanium processors. See FLD section for

more details.

€ These aren’t true ports but actually banks instead. Bank conflicts can occur as in previous Intel Itanium processors. See MLD

section for details.

f These aren’t true ports but are slices instead. (Slices and banks are pretty similar, but in the LLC they are called slices.) Slice
conflicts and many other types of conflicts can occur on the Ring.
9 Because of the intricacies of MLD queueing, sometimes MLD will be non-blocking to some hits even with more this number of
primary misses unresolved. However, at most the specified number can be simultaneously outstanding to the higher level

caches.

M There are some conflicts between fills and stores, but less so that previous Intel Itanium processors. See FLD section for more

details.

Table 2-27. Data Cache Differences from Previous Intel Itanium Processors

FLD MLD LLC
Size Unchanged Unchanged Less (4) MB per core than some
previous processors but cache is
shared among all cores on die
Latency 2 cycle (speculative) wr latency is | Minimum latency is up from 5,6 | Latency is more than double
down from 4 (non-speculative) cycles previously; typical latency | previous Intel Itanium processor
previously is close to unchanged
Line Size Unchanged Down from 128 byte lines 64B down from 128B
previously to 64- byte lines with
buddy line prefetch
Associativity Unchanged Unchanged up from 12 ways
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Table 2-27. Data Cache Differences from Previous Intel Itanium Processors

FLD

MLD

LLC

number of ports

down from 4 ports (2R, 2W); fill
port is better on the processor

down from 4 ports

still a ratio of 1 port per core, but
all 8 ports are accessible by all
cores

misses outstanding

replacment unchanged unchanged unchanged
algorithm
max # primary up from 8 previously unchanged fewer misses per core, but all

queueing available to all cores

max # secondary
misses outstanding

unchanged

# unchanged, but different
implementation might be
detectable

n/a

write policy

unchanged

unchanged

unchanged

store data
buffering

none needed on the processor due
to lower speculative write
latencies

up from 24 entries

less writeback buffering per core
but total writeback buffering is
available to all cores

fill bandwidth

up from 32 bytes / cycle

unchanged

system dependent

alignment

unchanged

unchanged

n/a

address ordering
granularity

improved from overlap in
VA[11:2]

less granular

unchanged

Each data access operation comes into the one of the main pipeline M-pipes from the
instruction buffer, the data prefetch queue, or the register stack engine. Operations
that continue on to the MLD exit the main pipeline and are inserted in the MLD OZQ.
The MLD OZQ is a decoupling buffer between the main pipeline back-end and the MLD
pipeline similar to the instruction buffer between the main pipeline front-end and back-
end. Data access operations enter the MLD pipeline from the MLD OZQ (or bypass), the
MLD SMQ, or the MLD FAB. Operations that MLD cannot service by itself are inserted
into the MLD FAB and continue on to the LLC via the Ring Interface Layer (RIL) and the
Ring that connects the multiple LLC cache slices. Operations that the LLC cannot
service by itself continue on to socket local memory or over Intel QPI to off socket
memory as appropriate.

Data returning from memory returns over the Ring to both the appropriate LLC slice
and the requesting core. For loads returning from the Ring, as critical chunk arrives, it
is forwarded to integer or floating point register file as appropriate. The register files
have separate ports for register returns, so register return operations to NOT interrupt
the main pipeline as they did in previous processors. Operations that fill the FLD
forward a whole cache line of data to the FLD. The FLD has a (somewhat) separate fill
port, so FLD fill operations do not typically interrupt the main pipeline. Operations
returning to the MLD from the Ring must typically be issued down the MLD pipeline
again whether or not they fill the MLD.

2.3.4.1

Data Prefetching

The processor has support for a variety of new kinds of hardware and software initiated
data prefetching.

2.3.4.1.1

Data Prefetch Queue (DPFQ)

The DPFQ is a queue that hold data prefetches that are waiting to issue on a main
pipeline M-port. All data prefetches, except for single count Ifetches issued on an M-
port and MLD buddy line prefetches, go through this queue. The DPFQ has 8 entries per
thread and holds all the information needed to execute a data prefetch. The DPFQ is a
FIFO, and when a prefetch is written into a full DPFQ, the oldest entry is dropped. A
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2.3.4.1.2

variety of mechanisms are employed to avoid dropping software initiated prefetches
and to intentionally drop old or bandwidth limited hardware initiated prefetches. See
the following sections on software and hardware data prefetching for more details.

Software Initiated Data Prefetching

Lfetches are instructions that allow software to initiate a data prefetch. In previous
processors, all Ifetches were executed in the main pipeline in much the same way a
load instruction would be. On the processor, Ifetches make use of the DPFQ in the
following cases:

* Ifetch-on-A

Previous Intel Itanium processors had 4 memory ports in the main pipeline. The
processor has only 2. Thus, the available M-op issue bandwidth per cycle has
decreased relative to previous processors. This decrease in M-op issue bandwidth
makes it more costly for software to issue Ifetches. In an attempt to offset this
increase in cost and to encourage software to issue as many useful Ifetches as it
can, regular Ifetches (those without .excl, .fault, or .count suffixes) will be allowed
to issue on the A ports in addition to the M ports.

One of the functions of the DPFQ is to temporarily hold Ifetches from an A-port
after they look up their virtual addresses (VAs). Lfetches in the DPFQ wait and
issue in order to an M-port, on a cycle that it is not being used. Thus, the DPFQ is
essentially providing out-of-order execution of Ifetches and allowing these Ifetches
to access M-port bandwidth that is available dynamically (due to various pipeline
replays, flushes, and issue stalls) but not previously available statically to software.
To handle situations where the M-ports are completely utilized, the DPF can be
configured to force an Ifetch into the pipeline via preemption, if that Ifetch has been
waiting to issue for more than a certain number of cycles. The PMU event
DPFQ_ENQ.LFETCH counts when Ifetches from an A-port are inserted into the
DPFQ.

Ifetch.count

The DPFQ also supports a new counted variety of Ifetch, named Ifetch.count. A
single Ifetch.count instruction can represent up to 32 individual prefetches, and can
specify various forward and backward strides between fetches. An Ifetch.count
occupies one entry in the DPFQ, and is expanded into multiple fetches as it is read
out of the queue and sent into an M-port. The PMU event
DPFQ_ENQ.LFETCH_COUNT counts when counted Ifetches are inserted into the
DPFQ.

DTB missing Ifetch

In previous designs a static choice could be made that allowed Ifetches that missed
the DTB to either be immediately dropped or to stall the main pipeline waiting for
the resulting hardware page walk (HPW) to complete. Each of these choices is not
optimal sometimes. If the Ifetches are really needed, dropping all of them that
target a page lacking a translation in the DTB is not a good choice. If the Ifetches
are not needed (e.g. prefetching off the end of a loop), then repeatedly stalling
(possibly repeatedly) the pipeline to do a useless HPW is not a good choice. The
DPFQ allows the pipeline to continue executing after an Ifetch encounters a DTB
miss without dropping Ifetches. Instead, Ifetches missing the DTB are placed in the
DPFQ, where they wait until a (non-blocking) HPW is completed and then issue to
the M-ports. The PMU event FLD_HWPREF_INS.DTBMISS counts when these
operations are inserted into the DPFQ.
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2.3.4.1.3 Hardware Initiated Data Prefetching

Software initiated prefetches are data prefetches that are initiated by Ifetch
instructions. Hardware initiated prefetches are prefetches that are initiated by the
hardware in response to something other than an Ifetch instruction. Both software and
hardware prefetching (except MLD buddy prefetching) make use of the DPFQ. The DPF
block provides for several varieties of hardware initiated prefetching:

= FLD sequential (neighbor line) prefetching

The goal of FLD sequential prefetching is to use a simple algorithm to take
advantage of spatial locality in the FLD. The simple algorithm is as follows:

— If an FLD load (FLDLD) misses the FLD and hits in the FLDTLB, insert a prefetch
in the DPFQ that will prefetch N lines in the forward direction and M lines in the
backward direction. The PMU event DPFQ_ENQ.FLD_BIDI counts these DPFQ
insertions.

— When the Nth line of a forward FLD sequential prefetch fills the FLD, mark that
cache line FWD. When the Mth line of a backward FLD sequential prefetch fills
the FLD, mark that cache line BWD.

— When an FLDLD hits in the FLD on a line marked FWD, insert a prefetch in the
DPFQ that will prefetch N more lines in the forward direction. When an FLDLD
hits in the FLD on a line marked BWD, insert a prefetch in the DPFQ that will
prefetch M more lines in the backward direction. The PMU events
DPFQ_ENQ.FLD_FWD and DPFQ_ENQ.FLD_BWD count these DPFQ insertions.

The parameters N and M will be fixed, but have not yet been determined.

.rel op transform to prefetch

A prefetch is inserted in the DPFQ when store with release semantics is observed in
the main pipeline. This generated prefetch is not required to observe the release
semantics and thus may be able to fetch the relevant cache line sooner than the
original fetch. The prefetch is dropped if it hits in MLD. The PMU event
FLD_HWPREF_INS.REL_OP) that counts these DPFQ insertions.

= .acq op prefetching

When a data fetch instruction with acquire semantics is outstanding (observed by
DPFQ in main pipe, but not yet globally visible), any MLD destined load instructions
observed by the DPFQ will cause a data prefetch operation to inserted in the DPFQ.
These data prefetches, if they reach the MLD OZQ while the instruction with acquire
semantics is still outstanding, will be allowed to issue out of the OZQ while the
instruction with acquire semantics is outstanding. The PMU event
FLD_HWPREF_INS.ACQ_PEND counts these DPFQ insertions.

FLD store alias replay case prefetching

In the case where the instruction on M1 is WB2 replayed due to a possible store
alias with the instruction on MO (see FLD WB2 replay section), a prefetch of the line
targeted by the store in M1 is inserted in the DPFQ. This is done because this WB2
replay is not exact, and moving the translation for the store into the FLDTLB will
resolve the potential store alias in a way that will remove unneeded WB2 replays.
The PMU event FLD_HWPREF_INS.STORE_ALIAS counts these DPFQ insertions.

RSE prefetching

Various types of RSE activity can trigger hardware prefetching, with the goal of
prefetching lines that the RSE will soon need. The last of a sequence (or “episode™)
of RSE fills will trigger prefetching backwards from the final load address. The last
of a sequence/episode of RSE spills will trigger prefetching forwards from the final
store address. A mov to ar.bspstore will begin prefetching backwards from the new
bspstore address, with the expectation that new RSE fills are likely to follow soon.
The number of lines prefetched (or whether no prefetching is done at all) is
individually configurable for each of these three cases. There are PMU events
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(DPFQ_ENQ.MOV_BSPST, DPFQ_ENQ.RSE_ANY, DPFQ_ENQ.RSE_LOAD, and
DPFQ_ENQ.RSE_STORE) that count these DPFQ insertions.

MLD sequential prefetching

All demand data fetches that miss the MLD are tracked, and can trigger hardware
prefetching if sequential behavior is detected. The MLD prefetcher can track
accesses to 8 different 4 kB pages (per thread). Two accesses within the same
address window on one of these pages indicate a possible sequential access
pattern, and prefetch the next line in the appropriate direction. Further accesses
that fall within the address window of the previous access indicate increasingly
higher confidence of a sequential access pattern, and increase the number of lines
that are prefetched ahead of the last access. An access to a page that falls outside
the address window of the previous access indicates reduced confidence of a
sequential access pattern, and decreases the number of lines that will be
prefetched. The window size for determining sequential accesses, and the
maximum number of lines that may be prefetched (or whether no prefetching is
done at all), are both configurable. There is a PMU event (currently called
DPFQ_ENQ.MLD) that counts these DPFQ insertions.

MLD buddy prefetching

Unless hinted otherwise (via PF_NONE), an operation that misses MLD typically
triggers a prefetch of the other half of its aligned 128B chunk, in addition to the
fetch of its 64B line. (PMU event: MLD_FILL_MESI_STATE_BUDDY.ANY)

2.3.4.1.4 DPFQ Data Fetch Retry
There are several cases where the DPFQ is used to retry a data fetch that would have
been dropped or would have significantly delayed the main pipeline:
= MLD OzQ full DPFQ retry
When a data fetch (either hardware or software prefetch) that was issued into the
main pipe by the DPFQ is rejected by the MLD OZQ because no entries are available
to hold the data fetch (looks like an Ifetch to MLD), that data fetch is re-inserted
into the DPFQ behind the other data fetches already in the DPFQ. The PMU events
FLD_HWPREF_INS.OZQ_FULL and FLD_HWPREF_INS.OZQ_FULL_LFETCH counts
these DPFQ insertions.
FLD fill request retry
FLD fill requests associated with a data fetch are dropped in several scenarios
including the following:
— data fetch misses the FLDTLB (but goes out to MLD, and possibly triggers a
DTB-to-FLD transfer)
— a store targeting the requested line reaches the DET stage of the pipeline
before the outstanding FLD fill request has filled the FLD
In these cases, a prefetch requesting an FLD fill is inserted in the DPFQ in place of
the dropped FLD fill for the original data fetch. The prefetch is hinted to be dropped
if it misses the MLD. Three PMU events (FLD_HWPREF_INS.FLDTLBMISS,
FLD_HWPREF_INS.FLDTLBMISS_LFETCH, and FLD_HWPREF_INS.CNCLDFILL)
count these DPFQ insertions.
2.3.4.1.5 Managing DPFQ Oversubscription
If prefetches are being inserted into the DPFQ at a higher rate than they are leaving the
queue and entering the pipeline, then the DPFQ can fill up and overflow. When the
DPFQ overflows, the older prefetches are dropped to make way for the newer
prefetches. Dropping software initiated prefetches is typically highly undesirable from a
performance perspective. Therefore, the DPFQ has several mechanisms to help it avoid
dropping software initiated prefetches. It can drop hardware initiated prefetches. It can
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force open slots on the M-pipes. It can continually replay the main pipeline. To facilitate
the usage of these mechanisms, the DPFQ keeps track of how old the entry at the head
of the queue is, how full it is, and how many software initiated prefetches it contains.

When the prefetch at the head of the DPFQ gets too old or the queue gets too full of
software initiated prefetches, if that prefetch is a hardware initiated prefetch, it is
dropped. If that prefetch is a software initiated prefetch and it is ready to be issued
(not waiting on the DTB or HPW), then it holds off instruction issue on the M-ports for a
cycle so it can be issued.

When the DPFQ gets full enough of software initiated prefetches that it is in danger of
dropping some and it is unable to issue any prefetches because it is waiting on
something (for example, DTB->FLDTLB transfer, HPW completion, available OZQ
entry), it will start continuously WB2 replaying the main pipeline until this condition
clears. (PMU event: BE_CYC_WB2_REPLAY.DAHR_HZRD)

When an Ifetch instruction is hinted PFD_ANY (see Data Access Hints section) and it
enters the DPFQ (for example, due to being issued on an A-port or being a counted
Ifetch), it will be treated as if it were a hardware initiated prefetch for the purpose of
managing DPFQ oversubscription. The purpose of this capability is to provide software
with a very low cost prefetch instruction.

Dropping Data Prefetches

The following are the events that cause data prefetches to be dropped:

= DPFQ Overflow

When an prefetch is inserted in a full DPFQ, the oldest DPFQ entry is dropped. The
PMU event DPFQ_ENQ_OVERFLOW.ANY counts these events.

= DPFQ Stale or Filling Up with Software Initiated Prefetches
When hardware initiated prefetches have been in the DPFQ for too long or are at
the head of the DPFQ and the queue is filling up with software initiated prefetches,
they may be dropped. The PMU event DPFQ_DEQ_PREEMPT.TIMEOUT counts these
events.

* FLD Hit
Prefetches are dropped when they hit in the FLD. The PMU event
PREF_DROP.FLD_HIT counts these events.

= Secondary FLD Miss or FLD FAB Full

A prefetch whose only goal is to fill the FLD (hinted (PFD_TLB_MLD or PFD_ANY)
and not FLD_NO_ALLOCATE) is dropped when it looks in the FLDFAB sees that it is
full or sees there is an outstanding FLD fill request to the same line. The PMU event
PREF_DROP.FLD_SECONDARY_MISS counts these events.

 FLDTLB Miss
Prefetches hinted PFD_ANY are dropped when they miss the FLDTLB. The PMU
event PREF_DROP.FLDTLB_MISS counts these events.

= DTB Miss

Prefetches hinted PF_DROP!=PFD_NORMAL are dropped when they miss the DTB.
Virtually addressed data prefetches, other than Ifetch.fault, that have any issue
that would cause an Ifetch.fault to take an address related fault will be dropped.
The PMU event PREF_DROP.DTB_MISS counts these events.

= MLD Hit

Prefetches that don’t request an FLD fill are dropped when they hit the MLD. The
PMU events (MLD_REF.HIT + MLD_SMQ_REF.HIT) with a dataref filter of LFETCH
and/or HWPF counts these events.
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e MLD Miss

Prefetches hinted PFD_TLB_MLD or PFD_ANY are dropped when they miss the MLD.
The PMU event MLD_HINT_PREF_DROP counts these events.

Secondary MLD Miss

Prefetches that are secondary MLD misses are dropped. The PMU events
(MLD_REF.SECONDARY_DROP + MLD_SMQ_REF.SECONDARY_DROP) count these
events.

FLD Fill Cancel

The FLD fill portion of a data prefetch can be cancelled by anything that can cancel
an FLD fill (see FLD fill section), even though that prefetch may still fill MLD and/or
LLC. The PMU event FLD_FILL_CANCEL.ANY with a dataref filter of LFETCH and/or
HWPF) that counts these events.

Data Cache

FLD

The First Level Data cache (FLD) is a 16 KB, 4-way set associative, single cycle, two-
port data cache. It handles integer loads and stores and has a line size of 64B. As with
previous Intel Itanium processors, floating point loads and stores and handled by the
MLD.

* Pipelines

In previous Intel Itanium processors, the FLD (called L1D), the FLDTLB, and the
DTB were on a pipeline that was distinct from the main pipeline. It could
recirculate, and might not always be in step with the main pipeline. On the
processor, the FLD, FLDTLB, and DTB are all directly part of the main pipeline. On
previous Intel Itanium processors, the main pipeline could stall. On the processor,
the main pipeline cannot stall. Instead, hazards are handled with replays. In
particular, FLD hazards are handled with DET and WB2 replays. Also, on previous
Intel Itanium processors, some MLD (called L2D) related operations, including
recirculates and returns to register files, had to go through the FLD (called L1D)
pipeline. On the processor, once operations are sent to the MLD, they never have to
go back through the FLD (that is, main) pipeline.

Pre-validation (with respect to the FLDTLB) and Multi-threading

As with previous processors, the FLD cache is pre-validated with respect to the
FLDTLB. This means that every entry is associated with one and only one entry in
the FLDTLB. Since entries in the FLDTLB are associated with only one thread, FLD
cache lines are also associated with only one thread. (See FLDTLB section for a
discussion of two threads accessing the same physical address and virtual aliasing
in general.) If the FLDTLB entry that an FLD cache line is associated with is
overwritten or become invalid, the corresponding lines in the FLD are no longer
accessible.

FLD Operations and Operation Types

The next two tables define some FLD operations and types of operations that will be
used in descriptions and figures that follow.

Table 2-28. Some FLD Asynchronous Operations (Sheet 1 of 2)

Name Description Injection Stage

a_snp Snoop (not snoop to shared) IBD

Intel® Itanium® Processor 9500 Series 53
Reference Manual for Software Development and Optimization Guide



intel.

The Intel Itanium Processor 9500 series Core

Table 2-28. Some FLD Asynchronous Operations (Sheet 2 of 2)

Name Description Injection Stage

a_snps Snoop to shared IBD

a_dpf data prefetch REG/IBD

a_flshd_stinv Invalidation of an FLD cache line that was updated by a DEC/REG/
non-committing store EXE;IBD

Table 2-29. FLD Operation Type Definitions
Op Type Instructions async ops

FLDLD integer loads other than Id16 and Idc.acq; RSE loads none

FLDPF Ifetch a_dpf

FLDCANFILL FLDLD + FLDPF instructions FLDPF ops

FLDST any integer store other than st16; RSE stores none

FLDINVLDT stf, st16, fc, xchg, cmpxchg, fetchadd a_snp, a_snps, a_flshd_stinv

FLDWR FLDST + FLDINVLDT instructions FLDINVLDT ops

FLD Hit: FLDLD

The result of FLDLD that hits in the FLD is available to most uses the cycle following
the load. An FLDLD result is not available to be used as an address until 2 cycles
after the load. Any use of the FLDLD result as an address within a cycle of the
FLDLD (independent of predicates) will result in a single cycle IBL issue stall (PMU
event: CYC_BE_IBD_STALL.MTOM).

FLD Hit: FLDWR

The FLD implements no allocate on write and write-through policies. In other
words, writes do not trigger FLD fills, and all writes are forwarded to the MLD.
Writes to the FLD are somewhat speculative on the processor allowing a lower FLD
write to read latency than on previous Intel Itanium processors. The result of an
FLDWR that hits in the FLD is available to an FLDLD 2 cycles after the FLDWR. An
FLDLD that follows an FLDWR in the same cycle or 1 cycle later with an overlapping
virtual address (VA[63:12] ignored but truly overlapping with respect to VA[11:0])
will be DET replayed (PMU event: CYC_BE_DET_REPLAY.LOAD_AFTER_WRITE).
Previous Intel Itanium processors had greater penalties, in general, for FLDLD after
FLDWR hazards as shown in Table 2-30.

Table 2-30. FLD Hitting FLDLD after FLDWR Hazard Penalties

FLDWR - FLDLD Distance Processor Penalty Previous Intel Itanium Processor
Penalty
0 cycles 5 cycles (VA[11:0] considered) 17 cycles (VA[11:2] considered)
1 cycle 5 cycles (VA[11:0] considered) 3 or 5 cycles (VA[11:2] considered)
2 cycles no penalty 3 cycles (full VA considered)
3 cycles no penalty 1 or 3 cycles (full VA considered)

54

The processor FLD does not have a store buffer. Instead, hitting FLDSTs write the
FLD speculatively (DET stage). If they do not retire (WB2 stage) the speculatively
updated cache lines must be invalidated. WB2 replays, faults/traps/interrupts, and
branch target mispredictions can cause FLDSTs that hit in the FLD to not retire. Any
FLD invalidates due to flushed stores will typically occur in the empty cycles
following a replay or flush. However, snoops conflict with FLD flushed store
invalidate operations, so snoops already in the pipeline could delay the FLD flushed
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store invalidate operations. If an FLDLD beats any pending a_flshd_stinv operations
down the pipeline, it will be DET replayed (PMU event:
CYC_BE_DET_REPLAY.FLUSHED_STORE).

— The FLD store ports on processor have been improved relative to previous Intel
Itanium processors. Previously, some stores could conflict with other loads and
stores. On the processor, there are not conflicts between loads and stores.
However, two simultaneous hitting FLDSTs with the same VA[7:5] and different
VA[11:8] conflict. The second store will be DET replayed (PMU event:
CYC_BE_DET_REPLAY.STORE_VS_STORE).

e FLD Misses

— Using the result of an FLDLD that misses the FLD will result in an EXE replay
(PMU event: CYC_BE_EXE_REPLAY.GR_LOAD_RAW) if the load more than one
cycle after the load or a DET replay (PMU event: CYC_
BE_DET_REPLAY.GR_LOAD).

e FLD Fills
Moving a cache line into the FLD is called filling the FLD. Before requesting that the
MLD return a cache line for an FLD fill, the FLD must allocate an entry in the 16
entry FLD Fill Address Buffer (FLDFAB). An operation cannot trigger an FLD fill
request when the FLD FAB is full. The FLDFAB is used to store addressing
information associated with the FLD fill. An FLD fill is requested and an entry
allocated in the FLDFAB when all of the following are true:

— operation type is FLDCANFILL (see Table 2-29)

— operation is a virtual mode operation

— data access hint says allocate in FLD (see section on data access hints)
— operation misses the FLD

— operation hits in the FLDTLB

— there is an entry available in the FLDFAB

— there is no outstanding FLD fill to the same line
An FLDFAB entry is removed when any of the following events occur:

— the operation is an instruction and that instruction fails to retire (MLD drops fill
request)
— the FLD receives an FLD fill operation from MLD
An FLD fill is cancelled prior to or simultaneous with the removal of the FLDFAB
entry when any of the following events occur:

— an FLDWR operation targeting the fill cache line reaches the DET stage (A
hardware initiated prefetch can occur in this case.)

— the FLDTLB entry corresponding to the fill is invalidated

— the MLD requests the FLD fill be dropped due to a prefetch that was hinted to
be dropped on MLD hit or an off thread prefetch that passed a potentially
overlapping (same VA[11:6]) on thread store

— an FLDTLB insert occurs 1 cycle before the time at which the FLD fill was going
to occur

— an FLDINVLDT with the same VA[11:6] reaches DET 1 cycle before the fill

— a snoop is lined up to occur 1 cycle after an FLD fill

On previous Intel Itanium processors, all FLD (called L1D) fills conflicted with all
FLD accesses. On the processor, conflicts between FLD fills and other FLD accesses
in the main pipeline have been reduced to the following two DET replay causing
conflicts:
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— FLDWR hit vs. FLD fill - A hitting FLDST is replayed if it occurs simultaneously
with a fill with same VA[7:6] and different VA[11:8] due to a structural hazard
in the FLD data array. A hitting FLDWR is replayed if it occurs at the same time
as or one cycle following a fill with the same VA[11:6] so that a write targeting
a line being replaced will not incorrectly write to the line that is replacing it.
(PMU event: CYC_BE_DET_REPLAY.WRITE_HIT_VS_FILL)

— FLDWR miss vs. FLD fill - An FLDST that misses the FLD and has the same
VA[13:6] as a fill that occurs at the same time as or one cycle following the
FLDST is DET replayed. An FLDWR that misses the FLD and has the same
VA[13:6] as a fill that occurs one cycle before the FLDWR is DET replayed.
These replays happen because there is not time for the FLDWR to cancel the fill
in the case that the FLDWR and fill are associated with the same VA[63:6].
(PMU event: CYC_BE_DET_REPLAY.WRITE_MISS_VS_FILL)

* FLD replacement
The FLD uses a Not Recently Used (NRU) replacement algorithm. In this algorithm,
one bit of state is associated with each line in the cache. Each of these bits can be
in a Recently Used (RU) state or a Not Recently Used (NRU) state.

At the time of an FLD fill, one of the 4 ways in the appropriate set is selected for
replacement in the following manner:

— If all of the ways are marked NRU, the way pointed to by the
FLD_random_way_ptr is chosen and the FLD_random_way_ptr is rotate by one
way. Otherwise, the first way marked NRU is selected.

The replacement state of the FLD is updated in the following manner:

— When an FLDLD hits in the FLD...
« Mark the accessed cache line RU.
e |If all the lines in the set are now marked RU, mark them all NRU.

— When a cache line is filled to the FLD...
« |If the fill is hinted to be marked NRU, it is.
 Otherwise, mark the filled line RU.
« |If all the lines in the set are now marked RU, mark them all NRU.

MLD

The Mid Level Data Cache (MLD) is a 256 KB, 8-way set associative, 2-ported data
cache. The minimum integer load-use latency is 8 cycles. It handles all memory
reference instructions save integer loads that can be satisfied by the First Level Data
Cache (FLD). In addition to the large caching structure, the MLD also contains the
Ordering Czar Queue (0ZQ), which manages all architecturally required ordering
constraints on memory references. The MLD is not guaranteed to be inclusive of the
FLD, but the LLC will be guaranteed to be inclusive of the MLD.

* Pipelines
The MLD implements a 9-stage pipeline that is independent from the main
instruction pipeline. The MLD connects to the main pipeline where it receives
memory operations either directly from the instruction stream or synthesized by
the FLD. The OZQ forms the logical decoupling point between the main pipeline and
the MLD pipeline (in much the same way the the Instruction Buffer forms a
decoupling point between the Front-End and Back-End instruction pipelines). When
the OZQ is empty, memory ops may bypass around the OZQ. In this case, the L1A
stage of the MLD pipeline corresponds with the DET stage of the main pipeline.
When the OZQ is not empty, or an operation is not allowed to bypass (due to
asymmetry or semantic ordering constraints), the OZQ is written at the end of the
DET stage. Memory ops in the OZQ are selected (nominated) in the first, or L1N,
stage of the MLD pipeline.
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Unlike prior processors, the MLD tag and data arrays are part of the same
monolithic pipeline and logically occur after the OZQ. In addition, the MLD pipeline
is a stall-based pipeline, not a replay-based pipeline. Once an op is issued into the
MLD pipeline from the OZQ it is guaranteed to complete. The MLD pipeline stalls to
reconcile structural and RAW hazards. The OZQ nomination mechanism handles
semantic and address ordering constraints (and makes an attempt to prevent some
structural hazards).

Like prior processors, the MLD data is pseudo-ported via banking. The data array is
broken up into 16 banks. A given data value is mapped to a specific bank by
address bits 7:4. Each bank is single-ported. If multiple operations need to read or
write the same bank on the same cycle, a structural hazard occurs, see below. The
banks are organized in such a way that a 64 B FLD fill operation, essentially a 64 B
transfer from MLD to FLD, can complete in a single cycle. By the same token, a
64 B MLD fill operation (on an MLD miss) also completes in a single cycle. The MLD
tag array has 2 true ports, supporting two independent reads or one write (for fills)
per cycle. All structural hazards, therefore, are a consequence of the data array
design.

= Hazards
There are two types of hazards the MLD pipeline resolves: structural and RAW.

There are several sub-types of structural hazards: RR bank, WW bank, RW bank,
Fill-store, and fill port.

— RR bank hazards occur when two memory ops flow down the MLD pipeline
together that need to read the same bank (determined by address bits 7:4),
but not the same full address. In this case, the MLD pipeline will stall for one
cycle. Ops issued from the OZQ will never have a RR bank hazard and thus this
hazard will only occur on bypassed ops.

— WW bank hazards occur when two memory ops flow down the MLD pipeline
together than need to write the same bank (address bits 7:4), but not the
same full address. Again, the MLD pipeline will stall for one cycle. Note that if a
pair of ops have both RR bank and WW bank hazards (that is, Read-Modify-
Write (RMW) stores), only one pipeline stall will occur. Ops issued from the OZQ
will never have a WW bank hazard and thus this hazard will only occur on
bypassed ops.

— RW bank hazards occur when a store that is writing a given bank is followed 4
cycles later by a memory op that is reading the same bank, but not the same
full address. The pipeline will stall for one cycle. Note that the stall may cause a
subsequent RW bank hazard with a following store. Because this is an inter-
stage hazard, ops issued from the OZQ may have a RW bank hazard.

— Fill-store hazards occur when a store is followed 4 cycles later by a fill
operation, independent of address. The pipeline will stall for one cycle (and
may cause a subsequent Fill-store hazard with a following store.)

— Fill port hazards occur when two memory ops flow down the MLD pipeline
together and both ops will perform an FLD fill. The pipeline will stall for one
cycle. Note that if the ops also have a RR bank hazard, only one stall will occur.
The 0zQ will attempt to avoid these hazards but they are not completely
prevented when issuing out of the OZQ.

RAW hazards occur when a multi-bank read matches same physical address of an
older store that has not completed. Matching in this case means matching down to
address bit 6. Multi-bank reads are integer loads and prefetches performing an FLD
fill, flushes and snoops. The MLD pipeline will keep the multi-bank read stalled in
the L1M pipeline stage until the store reaches the L1X pipeline stage. An exception
to this occurs when an integer load with FLD fill follows the store and both the load
and store address match down to address bit 4. In this case, there will be no stalls.
Because this is an inter-stage hazard, ops issued from the OZQ may have a RAW
hazard.
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e AR Hazards

There is another form of hazard that is resolved by the OZQ nomination mechanism
rather than the MLD pipeline - those involving the two ARs implemented by the
MLD, namely CCV and CSD. RAW, WAR, and WAW AR hazards are detected
between ops. AR writers are "move to" instructions, 1d16 and cmp8xchgl16. AR
readers are "move from" instructions, st16, and cmpxchg. These hazards are
resolved by holding off issue into the MLD pipeline until the previously issued
operations that form the hazard are completed (possibly requiring waiting for a
Id16, st16 or cmpxchg miss to complete). This hazard logic is thread aware (since
the ARs are threaded), although there may be superfluous stalls when an AR
reader or writer for the opposite thread is flowing down the MLD pipeline.

Store-Store and Store-Load Bypassing

Unlike prior processors, a store followed by another store to the same address
suffers no penalty - if even the stores are RWM stores or are closer than 5 cycles. A
RWM store is a 1 or 2 byte store or an unaligned store. Likewise, a load following a
store to the same address will not have a penalty (provided they are either to the
same address down to address bit 4 or the load is not requesting an FLD fill.

0ZQ Full and OzQ Data Buffer Full Replays

The OZQ on the processor is smaller (16 entries) than on previous processors. This
was enabled by two changes: 1) Secondary misses are placed into a separate
structure - the SMQ. 2) The OZQ allocation and nomination mechanism doesn’t use
head and tail pointers but uses age vectors instead. This allows more efficient
usage of it's entries - there are no "holes" in the OZQ. The OzZData Buffer, which
holds data for stores that have not yet completed, has been expanded from prior
processors to 32 entries. However, the OZQ can still be filled completely as can the
OZData Buffer. When the MLD OZQ is full, operations that need to go into the MLD
0ZQ are WB2 replayed to an IBL issue stall. When the MLD OZ Data Buffer is full,
operations that need to put data into the MLD OZ Data buffer are WB2 replayed
and then EXE replayed continuously until the MLD OZ Data Queue is no longer full.

MLD Fill Policies

Unlike prior processors, memory operations that miss the MLD are not required to
fill into the MLD. This behavior can be controlled via Data Access Hints. The MLD
line size was reduced from 128B in prior processors to 64B. This was implemented
without increasing the tag array size by using a "buddy" line scheme (also known
as sectoring). A single MLD tag covers 2 64B data lines. Each of the 64B lines
contains its own, independent MESI state. Generally, on an MLD miss both 64B
lines will be filled into the MLD. The non-critical 64B line (the buddy) is essentially
prefetched by the MLD. Again, this can be controlled via Data Access Hints. The
MLD is 8-way set associative, with the way selected for replacement at the time an
MLD miss is detected. Note that there is no "pending” tag state for the MLD.
Instead, the victim data is not read out until immediately prior to the corresponding
fill.

MLD Replacement

The MLD uses a Not Recently Used (NRU) replacement algorithm. In this algorithm,
one bit of state is associated with each line in the cache. Each of these bits can be
in a Recently Used (RU) state or a Not Recently Used (NRU) state.

At the time of an MLD fill, one of the 8 ways in the appropriate set is selected for
replacement in the following manner:

— The first way marked NRU that is not pointed at by the
MLD_ prohibited_way_ptr is selected. The MLD_prohibited_way_ptr is rotated
by one way each cycle.

The replacement state of the MLD is updated in the following manner:

— When a data access hits in the MLD...
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Figure 2-5.

= Mark the accessed cache line RU.
« If all the lines in the set are now marked RU, mark them all NRU except
for the line being accessed.

— When a cache line is filled to the MLD...
« |f the fill is hinted to be marked NRU, it is.
 Otherwise, mark the filled line RU.
« If all the lines in the set are now marked RU, mark them all NRU except
for the line being filled.

LLC

The LLC contains instructions and data and is shared among all 8 processor cores. It is
inclusive of all of the lower level caches in all 8 processor cores. This means that an
eviction from the LLC forces an eviction of the corresponding cache line in every lower
level cache it is resident in. The LLC is arranged in 8 slices around a bi-directional ring
shaped communication channel called the Ring. The entire LLC is a 32 MB, 32-way set
associative cache. Each slice is a 4 MB 32-way subset of the entire LLC. The cache is
indexed via a hash of PA[49:6] in order to better spread accesses around the cache
physically to increase performance. The latency of the LLC is variable depending on
distance between requesting core and responding LLC slice, frequency of the uncore
relative to the core, and bandwith of accesses from all of the cores. However, 50 cycles
would be a reasonable number to use for nominal load-to-use latency for a load hitting
in the LLC. The LLC implements write back and allocate-on-write policies. The LLC can
queue up 12 outstanding LLC misses / writebacks per slice. It implements a NRU
replacement policy.

Instruction Execution

As shown in the unit level block diagram below, the IBL is comprised of several syllable
and bundle wide queues. The queue storage elements and the associated pointers are
duplicated for multi-threading in each queue while the write/read datapath and control
logic are shared between the 2 threads. Two generic queue structures are used to build
each of the queues in IBL. The next two sections describe a generic syllable queue
structure and a generic bundle queue structure. Then the following sections list out the
queue entry formats for each specific queue.

IBL Block Diagram
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Instruction Dispersal

One of the important functions that IBL performs is that of Instruction Dispersal.
Instruction dispersal refers to the process by which up to 2 bundles of instructions
delivered by instruction fetch are issued to the twelve instruction execution pipelines in
the BE. Instruction dispersal on the processor is split into two steps, namely Instruction
Insertion and Instruction Issue. Instruction insertion is the process by which up to six
instructions from the two bundles delivered by instruction fetch are distributed and
inserted into the MQ, 1Q, AQ, FQ or BQ each cycle in the FE pipeline. Instruction issue
refers to the process of examining up to four bundles and issuing up to 12 instructions
in the BE pipeline to the respective execution pipelines attached to each of the
aforementioned IBL queues.

Frontend Instruction Insertion

The processor core implements the Template-based Queue Assignment (TQA)
algorithm to accomplish instruction insertion. The TQA algorithm has two primary
inputs which are the architectural bundle template field and instruction subtype
generated from simple instruction decode. The essential idea of TQA is that for each
architectural template, there is a default mapping for steering each instruction slot of
the bundle to a particular queue. This default mapping is motivated by the desire to
evenly distribute instructions across the BE execution pipelines. Since the BE provides
2M, 21, 2A, 2F and 3B functional units, the TQA algorithm attempts to use 1 of each
functional unit type for a given bundle. Furthermore, the algorithm assumes that within
each instruction group and bundle, the more restrictive instruction subtype is earlier in
the bundle slots. This assumption allows TQA to bias the second slot of the same type
in a bundle to the AQ and thus achieve even distribution. The primary benefits of TQA
are:

= predictable hardware dispersal behavior and software control since it is based on
architectural templates

= independent of instruction address alignment and fetch patterns

As mentioned above, TQA requires instruction subtype generation. Simple instruction
decode is performed in the FE pipeline in the FDC stage to classify each instruction slot
of a bundle into 1 of 7 instruction subtypes. The 7 instruction subtypes are enumerated
in the table below. For each instruction subtype, the table shows the bundle slot from
which the instruction can originate, the legal queue assignment and a brief description
of the instructions in that subtype. Legal queue assignment implies that a particular
subtype must be inserted into a particular queue because instruction execution is only
supported on the functional units attached to that queue.

Instruction Subtypes for Dispersal

Subtype Bl;?gtle %fs%?ér?nlflglr':f Description
MO1 M-slot MQ M-format instructions except for chk.s, nop and some Ifetch
MA M-slot MQ, AQ A1-8 instructions and some M-format such as chk.s.m, nop.m, Ifetch
1A M-slot AQ A9-10 instructions

I-slot 1Q, AQ A1-10, chk.s.i instructions

101 I-slot 1Q I-format instructions except for chk.s.i, nop.i
NOP any NQ Any nop instruction
FOP F-slot FQ F-format instructions except for nop.f
BOP B-slot BQ B-format instructions except for nop.b, brp
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Given the architectural template and the instruction subtype information described
above, a queue mapping table can be derived for queue assignment as per the TQA
algorithm. In the queue mapping table shown below, each row of the table corresponds
to a unique template type in the Itanium architecture. For convenience, the MLX
template is shown in 2 rows (MLI and MLB) to explicitly indicate behavior when the X-
slot is an I-unit or a B-unit instruction. The leftmost column in the table specifies the
architectural template (in uppercase letters). The next six columns specify the rules of
the TQA algorithm that are applied when a particular template is presented and
combined with instruction subtype information. Further details on the rules column are:

= 2M/21 - applies when instruction subtype forces the queue assignment to 2 MQ or 2
1Q entries. Any given bundle can be labeled as a "2M", "21" or neither. For example,
in a MMI template, if the first 2 slots are MO1 subtypes, then this bundle would be
labeled as a 2M bundle.

e 2M Prev or 21 Prev - This denotes whether there were two MQ or two 1Q
assignments in the previous bundle. This is a simple history mechanism used to
adjust queue assignments for the current bundle based on information from the
previous bundle. The previous bundle information may be from a concurrently
fetched bundle or fetched earlier. This previous bundle history is cleared if the
previous bundle was terminated with a stop bit, or contained a stop bit, or if it was
a branch bundle. There is one other case where the hardware will assert 2M Prev
irrespective of history, and that is when hardware recognizes a 3rd bundle in an
instruction group. This is an optimization to give compilation more scheduling
options to allow more 3-bundle wide instruction groups to achieve 9-wide issue in
the BE. For this purpose, an instruction group is considered terminated if a
template stop bit is reached or a bundle with an actual branch instruction is
reached. Lastly, there is a flaw to take note of. If an MI;;l template is used with an
A9 or A10 format instruction in the M-slot, and a true 101 subtype in slot 1, the HW
can count this as 21 Prev for the next bundle. This only occurs if the Ml;;I bundle is
at an even bundle address, and if there is no stop bit at the end of this bundle.

* 2nd M/I - This means that the 2nd M-slot or a 2nd I-slot is a MO1 subtype or a 101
subtype respectively. So for MM* templates, if the 2nd M-slot is a MO1 subtype, this
bundle would be labeled a "2nd M" template. Likewise for *1l templates, if the 2nd
I-slot is a 101 subtype, this bundle would be labeled a "2nd I" template.

« Default - The default mapping is the queue assignment if none of the columns to
the left apply and is set to achieve even distribution of instructions from a bundle
across the BE execution pipelines.

= Fallback - This is the fall-back case and the rule applied if all of the other rules fail
to create a legal queue assignment. As shown in the table, it is needed for only a
couple of templates.

Each cell in the table specifies the queue assignment where the lower-case letters
indicate the appropriate queue, that is, m=MQ, i=1Q, a=AQ, f=FQ and b=BQ. A blank
cell implies that for the given row, that rule column does not apply. The queue mapping
table is applied by starting with a bundle template, choosing an appropriate row of the
table and applying the rules from left to right along the row skipping empty cells as
follows:

e If current bundle is "2M" or a "21" then use column 2M/21l or else

« If current bundle is ("2nd M/1" and "no mapping conflict") then use column 2nd M/I
or else

= If previous bundle is ("2M" and "no mapping conflict™) then use column 2M Prev or
else
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= If previous bundle is (21" and "no mapping conflict") then use column 21 Prev or
else

« |If "Default” column has ("no mapping conflict") then use Default or else
* Use the Fallback column.
A mapping conflict is when the queue assignment would conflict with the Legal Queue

Assignment as defined in Table 2-31. Nops do not have mapping conflicts, do not count
for 2M or 21 determination, and are not placed in a queue.

Table 2-32. Queue Mapping Table
Template 2M/21 2nd M/1 | 2M Prev 21 Prev Default Fallback
MIl mii mai aia maa mia
MI; 1 mii aai mai mii
MLI aai mai
MLB abb mbb
MMI mmi ami aai maa mai
M;MlI mmi ami mmi
MFI afi mfa mfi
MMF mmf amf aaf maf
MIB aib mab mib
MBB abb mbb
BBB bbb
MMB mmb amb aab mab
MFB afb mfb
Since the processor core IEU does not support execution of A9 and A10 format
instructions on the M-port execution pipelines, these instructions must be dealt with as
a special case in instruction dispersal. Instead of treating A9/A10 instructions in M-slots
as a mapping conflict, it was found to be simpler to devise specific steering rules and
they are presented in the table below. The queue assignments specified below do not
attempt to optimize for performance but instead are designed to simplify hardware
implementation. It is recommended to software that A9-A10 instructions be placed in I-
slots in a bundle for optimal performance. This queue mapping table is read and
interpreted just like the generic one above except that a A9-A10 instruction in an M-
slot is called out as a capitol "A" in the second column from the left.
Table 2-33. Queue Mapping Table - A9/A10 in an M-slot Special Case (Sheet 1 of 2)
Template 2M/21 2nd M/1 | 2M Prev 21 Prev Default Fallback
Ml All aai aii
MI; 1 Al;l aai aii
MLI ALI aai
MLB ALB abb
MMI AMI ami aai
MAI aai maa mai
AAI aai
62 Intel® Itanium® Processor 9500 Series
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Table 2-33. Queue Mapping Table - A9/A10 in an M-slot Special Case (Sheet 2 of 2)

Template 2M/21 2nd M/1 | 2M Prev 21 Prev Default Fallback
M;MI A;MI ami aai
M;AI aai maa mai
A;Al aai
MFI1 AFI afi
MMF AMF amf aaf
MAF aaf maf
AAF aaf
MIB AlIB aab aib
MBB ABB abb
BBB BBB bbb
MMB AMB amb aab
MAB aab mab
AAB aab
MFB AFB afb

While writing instructions into the instruction queues, IBL also puts information into the
control queue (CQ) about each bundle. The CQ entry is defined in ibldspqg section
above. For each slot in a bundle the CQ records which queue it went into (called here
its "type") as a one-hot 6-bit field that is divided in two sections, one for Mq, Iq, Aq, or
Fqg, and one for Bq or Ng, where the Nq is the pseudo-queue for squashed nops. For
each slot, the CQ entry also records the address or pointer in the corresponding queue
in which the instruction will be stored. These pointers are referred to as the shadow
write pointers, because they are copies of the pointers that live in the respective queue
control blocks. Along with the "where" information, the CQ entry records per slot a stop
bit, a port need for 10 or MO (the asym bit), and a bit for a need for an IBD stall due to
RSE behavior. For the whole bundle, the CQ entry also records whether it is an MLX
template, and whether the bundle has an instruction-side fault associated with it.

Backend Instruction Issue

The processor instruction issue out of the queues into the backend pipeline, is in
program order, and uses a 4 bundle wide issue window which is populated each cycle
by the 4 oldest not yet issued bundles. In the oldest bundle, one or two instructions
may have issued last cycle, so in each cycle, there is a marker for the starting syllable
which defines the start of the issue window. The 4 bundle wide window can contain up
to 12 instructions to issue, but there is an additional constraint on the 4th bundle of the
window. Only nops and branches will be allowed to issue from this last bundle.
Squashed nops are part of the issue window and issue in program order with the rest of
the instructions.

The basic issue algorithm is to look in the issue window from oldest to youngest and
find the first reason to stop issue. The reasons are termed architectural stop bits,
implicit stops, asymmetric stops, oversubscription stops, and 4th bundle constraint
stops. Implicit stops are placed at the end of each non-trivial branch bundle (containing
a non-brp, non-nop.b, b-type instruction). Asymmetric stops are on the second M or |
type instruction in the issue window if it needs to be on port MO or 10. Oversubscription
stops are on the third M, I, A, or F type instruction in the issue window, because there
are only two read ports on each of these instruction queues. Constraint stops are
placed on the first non-squashed nop, non-b-type instruction in the 4th bundle.
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Figure 2-6.

All of the instructions from the start syllable to the first stop reason will be allowed to
issue and the corresponding execution units will receive a notice of instruction validity.
Squashed nops will be executed as single bit instructions by the exceptions unit (EPN).
There can be up to 12 squashed nops issued in a cycle. For the next cycle, the
individual instruction queues will advance their read point by how many of their
instructions were issued, and new, un-issued bundles will slide into the issue window
while the just issued ones drop out.

Instruction Dispersal Examples

The figures below show how the TQA algorithm described above works on different
code examples. Figure 2-6 shows how a 2 bundle wide instruction group would get
inserted into the IBQ and issued to the various execution pipelines in the BE. Because
the first bundle is a "21" bundle, the second chooses the "21 Prev" column rule to
disperse the MMI template, sending slots 1 and 2 to the AQ.

Dispersal Example 1 - 2-bundle group

{.mii MII 2M/21
148 M01 mQ MO
shl 101 iQ 10
czx 101 iQ 11
}
{.mmi MMI 21 Prev
st4 MO1 mQ M1
add MA a0 A0 6-wide issue of 2
sub IA aQ Al bundles; 2M, 2,
}ii 2A

64

Figure 2-7 shows a 3 bundle wide instruction group and how it might disperse. In this
case, the first 2 bundles follow the "Default” column rules as software has spread out
execution resources evenly. The 3rd bundle is recognized by hardware and labeled as a
"2M Prev" and it steers slotO or the M-slot instruction to the AQ and thus achieve 9
instruction wide issue in the BE.
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Figure 2-7. Dispersal Example 2 - 3-bundle group

Queue I BE
Bundles Instruction |Mapping JQueue Execution
Presented Template |Subtype Rule Assignment |Pipeline Notes
{.mmi MMI Default
1d8 MO1 mQ MO
XOr MA aQ AQ
czx 101 iQ 10
}
{.mfi MFI Default
st4 MO1 mQ M1
fma FOP £Q FO
sub IA iQ I1
}
{.mfb MFB 2M Prev
andcm MA aQ Al
fsub FOP £Q F1 9-wide issue of 3
br BOP bQ B2 bundles; 2M, 2|,
Yii 2A, 2F, 1B

2.3.5.2

Intel® Itanium® Processor 9500 Series

Backend Instruction Issue Implementation

On the output side of the queues, each cycle, the control queue provides the four oldest
bundle entries to the iblvalids block. The iblvalids block controls which instructions are
issued, and tells the other queues when to advance to new entries.

The HW implementation has stop reasons that can come into play in addition to those
described above. There is an issue width control (iwc) used after replays and for power
control (for throttling dispersal) which defines the youngest syllable in the four bundles
that is allowed to issue. There are DAF controls for single issue per instruction queue,

and there is a DAF-like control for the floating point register file step load control.

Issue Group Scheduling

For certain read-after-write hazards that are deemed to be performance critical, the
issue logic in IBL will inject bubbles at the IBD stage to avoid these hazards from
occurring in the pipeline. This is referred to as Issue Group Scheduling. Two classes of
such read-after-write hazards are covered by issue group scheduling: 1) FR-FR hazards
or FP register hazards and 2) IntLd-MemAddr hazards, or an integer load instruction
target register being consumed as a memory address register.

The FR-FR hazards were deemed to be performance critical due to the FPU pipeline
latency increase to 6 cycles on Intel Itanium Processor 9500 Series from 4 cycles for
“pre” Intel Itanium Processor 9500 Series. Without issue group scheduling, legacy code
scheduled at 4 cycle separation would have triggered EXE replays resulting in a 4 cycle
penalty for every such hazard.

All FR writers on the F-pipes are fixed latency at 6 cycles, that is, they can bypass a
result in the WB4 or FP6 pipestage to an FR reader in the REG stage. The FR-FR issue
group scheduling logic then needs to ensure that minimum 6 cycle separation between
an FR writer and FR reader. The separation distance is achieved by a combination of
EXE replay and IBD stall. For FR readers separated from FR writers by 1 or 2 cycles, the
issue stall logic can be minimized by first letting an EXE replay occur without any
additional penalty. This is shown in the first 2 pipeline tables below. For FR readers
separated from FR writers by 3, 4 or 5 cycles, the scheduling logic inserts the
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appropriate number of IBD stall cycles. FR writers on F-pipes are considered to be all
instructions in the class of fp-arith and fp-non-arith as defined in the Intel® Itanium

The Intel Itanium Processor 9500 series Core

®

Architecture Software Developer’'s Manual. FR readers would be fp-arith, fp-non-arith
and pr-writers-fp classes on F-pipes and mem-writers-fp, chk.s and getf on M-pipes.

Table 2-34. Casel - 1 cycle separation for FR read after write

~ ~ o [ ~ ~ ~ ~
o N 0 N 1) © N~ ©
o o o a8 o o ol a
[a) (@] O [ [ L w L L [ [
CYCLE m L | ) ) ~ ~ ~ ~ ~ ~ Notes
- ) o w = m N V) < 0 ©
% o o m i) ) i) i)
blo|z]z2|2]2|2]:2
101 Rd Wr
102 Rd Wr
103 Rd Wr
104 Rd | Wr EXE Replay
105 Rd Wr IBD Stall
106 Rd Wr
107 Rd Wr
108 Rd Wr Bypass from WB4
109 Rd Wr
110 Rd Wr | FRF updated
Table 2-35. Case2 - 2 cycle separation for FR read after write
SISl ||| |R|®
o o o o ol o o o
[a) O O L L L T8 L T L L
CYCLE a m o o lol vl oo 2 |- Notes
- &) o w = 0 o~ vl < 1o} ©
% o o 0 i) ) ) o)
I s T I - T I B
101 Rd Wr
102 Rd Wr
103 Rd Wr
104 Rd Wr EXE Replay
105 Rd Wr
106 Rd Wr
107 Rd Wr Bypass from WB4
108 Rd Wr
109 Rd Wr | FRF updated
110 Rd
Table 2-36. Case3 - 3 cycle Separation for FR Read After Write (Sheet 1 of 2)
~
2la|g|5|e|e|f|s
o o o o ol o o o
[a) O O L L L L [T [T L L
CYCLE o m o o lo |l vl oo 2> Notes
- @) o w — 0 N vl < 1o} ©
% o o 0 i) ) ) )
] a) 2 2 2 2 2 2
101 Rd Wr IBD Stall
102 Rd Wr IBD Stall
103 Rd Wr IBD Stall

66

Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide



[ ] ®
The Intel Itanium Processor 9500 series Core l n tel

Table 2-36. Case3 - 3 cycle Separation for FR Read After Write (Sheet 2 of 2)

2.3.5.3

~ ~ ~ o ~ ~ ~ ~
‘—c o Y < o © N~ [°)
o o o a8 a o o a
[a) O O L L L I8 [ [ - L
CYCLE o o w ool vl ol |22 |> Notes
- [a) 4 w - 0 o~ ™ < To} ©
54 w ¥ m 2] 2] 2] [ai]
w &) 2 2 2 2 2 2
104 Rd Wr
105 Rd Wr
106 Rd Wr Bypass from WB4
107 Rd Wr
108 Rd Wr | FRF updated
109 Rd
110 Rd

Long-latency FR Hazards

Floating-point load operations are considered to be long latency operations and also
exhibit variable latency depending on whether they hit in the MLD, LLC or memory. IBL
includes a FR scoreboard to track outstanding updates to the target FR of such
operations. Then, whenever a subsequent operation consumes an invalid FR, an EXE
replay is triggered followed by an IBD stall if necessary to align the returning data for
this FR from the memory hierarchy. A consuming operation in this case can be either a
read or a write of the outstanding FR. Subsequent writers must be serialized in this
fashion to ensure in-order architectural state updates. The IBL FR scoreboard pending
bits are set by mem-readers-fp and setf instruction classes. The consuming operations
include mem-readers-fp, mem-writers-fp, setf, getf on M-pipes and fp-arith, fp-non-
arith and pr-writers-fp instruction classes on F-pipes.

The pipeline table below shows an example of such a hazard. The table shows a FP load
operation (ldf) executing down the main pipeline. The MLDPipe column shows Idf as it
progresses in the MLD pipeline. The MLD drives the return regid in the L1M stage and
drives the data for the return in the L1C pipe stage. The data is then available for
bypass in the L1X pipe stage in the FPU to a consumer operation in the REG stage. The
IBL stall logic uses the return regid from the L1M stage to release the IBD stall just-in-
time to catch the return data from the L1X pipe stage.

Table 2-37. Long-latency FR Hazards (Sheet 1 of 2)

Intel® Itanium® Processor 9500 Series

0]
Q
CYCLE @ § é % E g § “D_- Notes

a
=

101 Idf

102 Idf

103 use Idf

104 use Idf

105 use Idf L1A

106 use Idf L1T EXE Replay

107 use Idf | L1H IBD Stall

108 use L1M IBD Stall

109 use L1D IBD Stall

110 use LicC
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Table 2-37. Long-latency FR Hazards (Sheet 2 of 2)

[0)
Q
[aa] (N ~
cveee | 2 |2 |2 | X |G| | o : Notes
- a x w &) 2 2 a
S
111 use L1W
112 use L1X Bypass MLDRTN
113 use
114 use
2.3.54 IBL Miscellaneous Replays

IBL is also responsible for satisfying various AR, CR and other serialization pipeline
hazards using the EXE replay mechanism. The following table lists such producer-
consumer hazards that the IBL logic detects and requests an EXE replay on the
appropriate execution pipeline.

Table 2-38. IBL Misc EXE Replays

9]
9]
a P 5 - = - [ X x - k] -
o) 3 o ko] c
Producer / % Q 3 Q 2 2 2 QZ: g § % § c @ E
Consumer o g g c s 9 8 4 E 0 w % % 8 n
LT | E|g | X || |2 |lg |5 |3 “le | &
o i
VIdOp All
RelType MO
M1
SrlzOp MO | MO
B2 | B2
ThashOp MO
mvfXpnCr MO
allocOp MO
mvfBSPS MO MO
mvfBSP MO
mvtBSPS MO
MvVRNAT MO MO
mvfRSC MO
mvfLCEC 10
brCall BO
B1
B2
mvtBR 11
mvfFPSR MO MO MO
VIdFpOp FO
F1
VIdFpArith FO
F1
FpSfop FO | FoO
F1 F1
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2.4 Intel Itanium Processor 9500 Series Multi-
Threading

The processor expands support for Hyper-Threading or HT Technology over previous
Itanium processors with key additional hardware to deliver higher utilization of
processor core resources and thus higher performance and throughput. As in previous
Itanium processors, the processor core duplicates all architectural state and some
micro-architectural state to create 2 logical processors in each physical core. The
processor introduces the concept of 2 thread domains in the core by exploiting the
decoupled pipeline separated by the Instruction Buffer that allows instruction fetch and
instruction execution to operate independently. The Front End (FE) thread domain
spans the FE of the pipeline, that is, from IPG to IBD while the Back End (BE) thread
domain spans the BE of the pipeline, that is, from IBD to WB2. With independent
thread domains and a fully duplicated Instruction Buffer, the FE can perform instruction
fetch for either thread regardless of which thread the BE is executing. The processor
implements Switch-On-Event MT or SOEMT, as in previous Itanium processors, in each
thread domain. That is, only 1 thread can be active at any time in the FE pipeline or the
BE pipeline but the FE and the BE may be fetching and executing on the same thread or
a different thread in any given cycle respectively. The FE thread domain has its own set
of thread switch events and a switch controller. The FE thread domain switch controller
attempts to maximize instruction fetch bandwidth utilization with the goal of keeping
the Instruction Buffer full for both threads. The BE thread domain also has its own set
of thread switch events and a separate switch controller. The BE thread domain switch
controller attempts to maximize utilization of execution resources by switching between
the two thread’s Instruction Buffer whenever a thread in the BE incurs a long latency
event. The next two sections present more details on the MT implementation for the FE
thread domain and the BE thread domain.

2.4.1 Frontend MT Introduction

On the processor, the frontend and backend pipelines are on separate threading
domains. The frontend has the choice of filling two instruction buffers, one per thread.
This enables greater frontend efficiency by enabling it to hide long latency events, and,
more importantly, enables the backend to have a choice of instruction buffers.

The frontend is SOEMT (Switch on Event MT) which means only one thread will be
active in the frontend of the pipeline at a time. The frontend will switch threads and
begin inserting instructions into the other thread's instruction buffer based on a series
of events. There are two types of switch events: implicit and explicit. The implicit
switch algorithm utilizes an urgency based urgency system that monitors the relative
urgency between the two threads in deciding when to switch. In general, two factors
influence the urgency of a thread. The first is determined by whether a thread is
believed to have instructions ready to deliver to the instruction buffer, and the second
is whether the backend is requesting immediate attention on a particular thread. When
one thread has a higher urgency than the other, a thread switch occurs. The purpose of
the urgency system is to determine which thread has useful work to do to enable more
efficient operation. In addition, the urgency system can be biased to follow the
backend's active thread except when there is no useful work to do. Explicit switch
events force a thread switch irrespective of the background thread's urgency.

There is no additional user-visible state over what exists on Intel Itanium Processor
9300 Series to enable frontend multithreading. Microarchitecturally, speculative state is
kept for both threads and the frontend operates on this speculative state until the
backend refreshes the appropriate thread with architected state.

Intel® Itanium® Processor 9500 Series 69
Reference Manual for Software Development and Optimization Guide



2.4.2.1

70

®
l n tel The Intel Itanium Processor 9500 series Core

BE Thread Domain

The BE thread domain spans from IBD to WB2 in the main core pipeline. Switching
threads in the BE involves 2 primary steps: 1) stopping execution of the current thread
and 2) switching the Instruction Buffer to the new thread and launching instruction out
of the IBQ into the BE. A thread switch begins with some switch event arriving and
being processed through a relative comparison of the two threads run-state. The
thread run-state is comprised of a thread priority state and a thread execution state.
The thread run-state is comparable to the concept of thread urgency on previous
Itanium processors. If the comparison of the thread run-state determines that a thread
switch would be useful, a thread switch request is generated and attributed to a switch
event. The switch controller in the BE then will request a IBD stage issue stall and wait
for the BE pipeline to drain from DEC to WB2 including accounting for any replays and/
or flushes occurring on the current thread. Once the main pipeline is idle, the active
thread in the BE is changed and after a few cycles valid instructions are launched into
the pipeline from the IBQ of the new thread, thus completing a thread switch operation.

Thread Priority State

As mentioned above, the concept of urgency of execution for a given thread in “pre”
Intel Itanium Processor 9500 Series has been replaced with two separate thread states.
One of these is the concept of thread priority and is mostly controlled by software. The
hint @priority and hint @pause instructions are two low overhead mechanisms for
software to communicate to hardware the urgency of execution for a given thread.
Three priority states are defined as follows:

e Nominal

— This is the default priority state for a thread.
= High

— This priority state is entered by retiring a hint @priority instruction which can
be executed on any M, | or F ports on the processor.

— Retiring a hint @priority instruction also has the side-effect of reloading the FG
thread timeslice with the High Timeout Value (HiTOV) and then it only counts
down during "Unstalled" thread execution cycles counting down every cycle in
the high state. The expiry of the timeslice leads to termination of High priority.
If a High priority thread is switched out for some reason, its remaining HiTOV
timeslice is preserved and restored when it is brought to the foreground again.

— The High priority state of a thread can also be terminated explicitly by software
using a hint @pause instruction. Executing a hint @pause at High priority
transitions the thread priority down to Nom.

e Low

— This priority state is entered by retiring a hint @pause instruction at Nom
priority and can be executed on any M, | or F ports on the processor.

— Entering the Low priority state due to hint@pause also has the side-effect of
reloading the background (BG) thread timeslice with Low Timeout Value
(LoTOV). The expiry of the LoTOV timeslice is then used to terminate Low
priority and return to thread priority to Nom. Unlike for high priority, this
timeslice counter decrements every cycle.

— This priority state is also entered when a thread has entered the Low Power
state due to the execution of a PAL_HALT_LIGHT call. For this case Low Priority
is only exited due to an external interrupt.
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2.4.2.2

This notion of thread priority is provided as a method for software to communicate the
future resource requirements to hardware multi-threaded processors to optimize
performance. Three specific scenarios under which it is especially important for
software to communicate its resource requirements through thread priority are:

« Idle Loops - By placing a hint @pause in idle loops, software communicates to
hardware it has no work to perform at present. The hardware in this case acts upon
the hint @pause by placing the thread in Low priority and switching away from it
until the LoTOV timeslice expiration, interrupt, or other switch event. This allows
the other thread to more fully utilize the shared hardware resources for a period of
time.

« Wait Loops - By placing a hint @pause and allocating a memory address into the
ALAT, software communicates to hardware that it is willing yield resources
temporarily until the data at the address is the target of a store on any other
processor. The hardware in this case responds to the hint @pause by placing the
thread in Low priority and switching away to the other thread. When the allocated
ALAT entry is invalidated due to the store, the thread priority is restored to Nom
and a thread switch brings back the waiting thread to the FG. If an ALAT
invalidation doesn’t arrive within a LoTOV timeslice, the timeslice expiration
accomplishes the same change in priority and thread switch.

— Example code
* ldxxxx

= Critical Regions - If software is about to enter a critical section, it can communicate
to hardware such critical need for resources by preceding the critical section with a
hint @priority. The hardware responds by raising the thread priority to High and
biases the thread switch behavior to give more resources to this critical thread for a
short duration. Software must be aware of a couple of corner cases with respect to
using hint @priority instructions:

— hint @priority followed by hint @pause in the same issue group: hardware will
ignore the hint @priority and the hint @pause will have its normal effects as
explained above.

— hint @pause followed by hint @priority: the hint @pause will cause a switch out
event and when this thread begins execution again the hint @priority will be
executed. This works as expected since a hint @pause always causes a WB2
replay on the instruction following the hint @pause to ensure precise thread
switch points in the instruction sequence.

The recommended way to terminate High priority is at the end of the critical region
perform the following instructions: hint@priority ;; hint@pause. This minimizes the
chance of a timeout while in high priority that would cause the hint@pause to take
the thread to low priority instead of nominal priority.

Thread Execution State

The second piece of thread state that replaces the concept of urgency of execution for
a given thread in “pre” Intel Itanium Processor 9500 Series Differences is the thread
execution state. Unlike thread priority state, the thread execution is determined and
managed completely by hardware. The thread execution state attempts to represent
the ability of a thread to make execution progress and utilize shared hardware
resources. Thus, there are three main components that determine comprise thread
execution state:

« D-cache data unavailable - a use causes an EXE or DET replay followed by a IBD
use-stall.

= I-cache fetch unavailable - the FE is unable to supply instructions, represented by
an empty IBQ.

Intel® Itanium® Processor 9500 Series 71
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< DTLB miss - a memory operation needs a translation that is unavailable in the DTB
causing a WB2 replay followed by a IBD hpw-stall.

Each of the above components represent potentially long latency events and hence are
candidates for possible thread switch out events (MLDuse, IBQEmpty, HPWmiss
respectively). The thread execution status resulting from these events is shown below

in the figure:

Thread Execution Status

<€ Waiting (W) >

Unstalled (U) Stalled (S) Blocked (B)

< €——Unblocked (b)——

2.4.2.3

Unstalled (U): a thread is considered unstalled until one of these long latency
events is hit.

Stalled (S): a thread transitions to this state when one of the long potential latency
events is hit.

Blocked (B): when a thread’s stalled state persists to the point where it is likely to
remain stalled for a long time, it transitions to this Blocked state for that latency
event. It is also upon reaching this Blocked state that a switch out event of type
MLDuse, IBQEmpty or HPWmiss is generated. The Blocked state is cancelled at
every thread switch for the new FG thread and can be re-engaged if Stalled
condition persists and thus generate another switch OUT event. It is also possible
that both threads in a core can be in the Blocked state simultaneously.

Waiting (W): the Waiting state of a thread is simply that the thread is not
Unstalled.

Unblocked (b): Likewise, the Unblocked state is simply that the thread is not
Blocked.

BE Thread Switch Events

Since, a thread switch operation is no longer a full pipeline flush including a re-fetch of
instructions, much finer-grain Switch-On-Event MT (SOEMT) can be implemented in the
BE to overlap even more idle cycles of a given thread with execution of the other
thread. The BE switch events are shown in the table below.

Table 2-39. BE Thread Switch Events (Sheet 1 of 2)

Event Name Event Type Event Description S¥V'tCh
ype

MLDUse Blocking Consumption of a MLD miss; Typically, occurs after an EXE replay to | OUT
an IBD stall on a use. If the stall lasts for more than typical MLD
latency, a MLDUse switch event is generated.

HPWMiss Data TLB miss; Typically occurs after a WB2 replay to an IBD stall on | OUT
a blocking hardware page walk. If missing translation isn’t returned
within the pre-programmed HPW event delay, a HPWMiss switch
event is generated.

IBQEmpty Instruction Buffer Empty; Typically occurs after a WRB BruFlush on a | OUT
mispredicted branch. If the FE doesn’t deliver instructions within the
pre-programmed IBQevent delay, a IBQEmpty event is generated.
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Table 2-39. BE Thread Switch Events (Sheet 2 of 2)
Event Name Event Type Event Description Switch
yp p Type
MLDRtn Unstall Data return corresponding to MLDUse IN
HPWInsrt Translation from the VHPT is ready for insertion corresponding to IN
HPWMiss
IBQFill Instruction Buffer Filled or FE is ready to fill corresponding to IN
IBQEmpty
FG TimeSlice Timeslice Timeslice for the current High Priority FG thread expires thus N/A
returning the FG thread priority to Nom.
BG TimeSlice Timeslice for the current BG thread expires thus usually requiring the | IN
thread to be switched in.
@Priority Hint Elevate FG thread priority to Hi. Does not cause a thread switch N/A
event
@Pause hint @pause at NOM priority causes the current FG thread to be ouT
switched out and moved to Low priority.
ALATInval ALAT ALAT Invalidation; An ALAT entry is invalidated on a hint @paused IN
thread while it is in back-ground.
LPMode Low Power LPEnter: A halt.Ip called by PAL_HALT_LIGHT retires on the ouT
foreground thread and the background thread is not in LP
LPExit: A wakeup event (external interrupt) arrives on the IN
background thread causing it to exit LP (
Fairness Others Unfairness Meter has crossed into Region3 and a thread switch is IN
required to bring the victim thread into the fore-ground.
The thread-switch overhead when pipeline is busy is about 13 cycles, and when the
pipe is empty is about 7 cycles.
MLDUse Event
An EXE or DET replay due to a unavailable register begins the sequence of events
leading to a MLDUse switch event. The consuming instruction is replayed to a IBD use-
stall and at this point the event delay counter is triggered to count down for a fixed
number of cycles. If the use-stall is resolved prior to the event delay counter
expiration, there is no thread switch to initiate and the current thread continues
execution. If the use-stall is still asserted at the delay counter expiration, a MLDuse
switch event is generated and the current thread is now considered to be in the Blocked
state for MLD. The IBL block is now also enabled to watch for MLD returns to the regid
that was unavailable and thus a MLDRtn can possibly be generated when the current
thread is in the BG.
HPWMiss Event
A WB2 replay due to a blocking DTLB miss begins the sequence of events leading to a
HPWNMiss switch event. The consuming instruction is replayed to a IBD hpw-stall and at
this point the event delay counter is triggered to count down for a fixed number of
cycles. If the hpw-stall is resolved prior to the event delay counter expiration, there is
no thread switch to initiate and the current thread continues execution. If the hpw-stall
is still asserted at the delay counter expiration, a HPWMiss switch event is generated
and the current thread is now considered to be in the Blocked state for HPW. The HPW
logic is now also enabled to watch for MLD returns for the VHPT load operation and thus
a HPWInsrt switch event can possibly be generated when the current thread is in the
BG.
IBOQEmpty Event
Intel® Itanium® Processor 9500 Series 73
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When the BE FG thread IBQ is empty, the event delay counter is triggered to count
down for a fixed number of cycles. Typically, this will occur when the BE hits a
mispredicted branch. A BRU flush of the pipeline occurs in WRB leading to an empty
IBQ. If the FE is unable to supply instructions within a fixed number of cycles, a
IBQEmpty thread switch event is initiated. At this point the current thread is Blocked
for IBQ and when the FE fills the IBQ or indicates that it is ready to fetch for this
thread, an IBQFill switch event can be generated when the current thread is in the BG.

Switch IN Events

Switch IN events are those that are generated by the BG thread as a request to
become the FG thread in the BE. When a thread switch request generated on behalf of
the BG thread is received and the switch controller accepts it, an IBD mt-stall is
generated to stop instruction issue on the current thread. Then, it would wait for the
pipeline to drain from DEC to WB2 to account for any flushes/replays before initiating
the thread switch. Examples for such events are MLDRtn, HPWInsrt, IBQFill,
ALATInvalidate, BG timeslice etc.

Thread Switch Decision Diagrams

The following tables define how thread priority and thread execution state described
above affect the switch controller behavior for each major type of switch event. Each
table is organized to show the FG thread priority/execution state combination in
columns and the BG thread priority/execution state combination in rows.

Here is a key to reading the tables:

Table 2-40. Thread Switch Transition Key

Symbol Description

FG

foreground thread

BG

background thread

High priority

Nominal priority

Low priority and non-LP

Low priority and LP

Unstalled execution state, i.e. ~(S || B)

Waiting execution state, i.e. (S || B)

Stalled execution state i.e. ~(U || B)

Blocked execution state i.e. ~(U || S)

c|lw|lwn|s|C

Not Blocked i.e. (U || S)

abc

Each table entry cell has three characters. a=new FG priority, b= new BG priority, c=thread
switch or not

For c only, "-" implies no change

For c only, "T" implies that a thread switch is initiated.

Invalid state or don't care due to event assumptions or impossible state combinations
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The Blocking event transitions are shown below and apply to MLDUse, HPWMiss and
IBQEmpty switch out events.
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Table 2-41. Blocking Event Transitions

FG States

HB NB LB

HU -7 -7

HW [ ---

NU -7 --T

NW | ---

LU

X | X| X| X| X[ X

LW

BG States

Lp --- ---

The Unstall event transitions are shown below and apply to MLDRtn, HPWInsrt and
IBQFill switch in events.

Table 2-42. Unstall Event Transitions

FG States

Hb HB Nb NB Lb LB
) HU --- --T --T --T
g
8 NU X --T --- --T
n
o LU --- --- --- --- --- ---
m

Table 2-43. FG Timeslice Expiration

FG States
HU
HU N-T
HW N - -
NU N--
NW N - -
0
Q LU N - -
@
b LW N - -
8 Lp N - -
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Table 2-44. BG Timeslice Expiration

FG States
HU HW NU NW
HU --- --T --T --T
HW --- --T --T --T
NU --- --T --T --T
)
% NW --- --T --T --T
b LU -N- -NT -NT -NT
8 LW -N- -NT -NT -NT

Table 2-45. Hint @pause

FG States

HU NU

HU N-T X
HW N-- L-T
NU N-- L-T
NW N -- L-T
§ LU N-- LNT
g LW N -- LNT
8 Lp N-- ---

Table 2-46. Hint @priority

FG States
HU NU LU
HU H-- H--
HW --- H-- H--
NU --- H-- H--
NW --- H-- H--
0
% LU --- H-- H--
b LW --- H-- H--
g Lp --- H-- H--

Each hint@priority execution causes a reload of FG timeslice with HITOV.
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Table 2-47. ALAT Invalidation Event In Low Priority

FG States
Hb HB Nb NB
NU .- T .- T .- T
(%]
% NW | ---
& | -N- -NT -NT -NT
2 [ -N- -N- -N- -N-

BG States NU and NW rows come about if BG was L when the ALATinv occurs, but a switch did not happen.

Table 2-48. LP Halt Event

FG States

HU NU

HU Lp-T |X

HW |Lp-T |Lp-T

NU Lp-T |Lp-T

NW |Lp-T |Lp-T

LU LpNT [LpNT

LW LoNT |LpNT

BG States

Lp Lp - - Lp - -

Table 2-49. External Interrupt Event on FG Thread

FG States
Hb HB Nb NB Lb LB Lp
HU X X X X X X
HW X X X
NU X X X X X
NW X X X
%]
% LU X X X
0 LW X X X
2 Lp N - -
Table 2-50. External Interrupt Event on BG Thread
FG States
Hb HB Nb NB Lb LB Lp
HU X X X X X X
HW X X X
NU X X X X X
NW X X X
0
% LU X X X
b LW X X X
2 Lp -NT -NT -NT -NT -NT -NT -NT
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Unfairness Meter

One of the challenges hardware multi-threading implementations have faced is
execution fairness between the 2 threads running on the same physical core. The idea
of fairness is further complicated by the desire to deliver maximum throughput since a
high throughput thread will almost always imply unfairness in execution for its sibling
thread. The processor introduces a new concept of an Unfairness Meter to track
whether a particular thread is being victimized and upon detection of such unfairness to
take remedial action.

The Unfairness Meter is designed to measure and track "unfairness" rather than some
metric such as IPC that tracks fairness between the two threads in a core. The essential
idea is that of a single up/down counter that ticks based on a thread being deemed
ready-to-execute but yet unable to execute because either it is in the back-ground in
the BE or is unable to execute despite being in the fore-ground in the BE. As shown in
the figure below, the unfairness meter defines 4 regions of operation and associated
threshold levels for the up/down counter. RegionO or "Green Region" is considered to
be normal operation i.e. the meter is allowed to drift between +L1 and -L1 as the 2
threads execute and attempt to deliver maximal throughput without any remedial
action being taken. So for example, if T1 is in the back-ground in the BE and is "ready-
to-execute", the unfairness meter will start ticking down from O toward —-L1. A negative
meter value indicates that T1 is the "losing" or "victim" thread while a positive meter
value indicates that TO is the "losing™ or "victim" thread.

The unfairness meter ticks in the appropriate direction based on which thread is losing
its fair share of execution. The conditions under which the meter will tick are:

= A thread is in the back-ground in the BE and is not at Low thread priority and is
Unstalled.

« A thread is stalled because of the other thread occupying a significant portion of
MLD queue resources.

However, a victim thread credits back accumulated unfairness when it is active, except
when condition 2 is true.

No unfairness counting happens during a thread switch.

The actual number of ticks the unfairness meter is given is determined by a per-thread
pre-scaler value defined in implementation specific registers. This notion of a pre-scaler
on the unfairness meter ticks allows for creating a policy of deliberately biased
unfairness in favor of one thread by the operating systems. High Priority and Exclusive
High Priority settings in PAL_SET_HW_POLICY provide 4:1 pre-scalar ratios, while other
performance and fairness personalities provide 1:1 pre-scalar ratio.

Intel® Itanium® Processor 9500 Series
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Figure 2-9. Unfairness Meter
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Remedial actions are associated with each region of the meter and are designed to be

progressively worse in terms of maintaining throughput of the aggressor thread. These

actions or policies come into effect as the meter crosses over a threshold into a new
region and stay in effect until the meter actually returns to 0. A given policy stays in
effect starting at the threshold crossover until the meter reaches 0 again. The table
below defines each of the meter regions and the policies or actions taken as different

regions are entered.

Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

79



intel.

The Intel Itanium Processor 9500 series Core

Table 2-51. Unfairness Meter Regions/Actions

Region

Description Policy/Action

RegionO or Green

Normal operating region. Threads are executing No action necessary; Maintain default switching
fairly behavior.

Regionl or Yellow | Unfairness in play as meter has crossed +L1 or -L1. | Make BG timeslices asymmetric; 1/2x on Victim, 2x

on Aggressor as long as thread priority is Nom or
High. The FG slice of a High priority thread and the
BG slice of a Low priority thread are not scaled to
maintain deterministic behavior for hint @pause and
@priority from a software view.

Region2 or

Orange

Unfairness in play as meter has crossed +L2 or —-L2. | Victim thread becomes fore-ground whenever it is
Unblocked; All yellow region policy actions also in
effect.

Region3 or Red

Unfairness in play as meter has crossed +L3 or —-L3. | Bring Victim thread to fore-ground whenever it is not
at Low priority and camp on it until fairness restored
or victim assumes low priority. The FE thread domain
is also locked to the BE thread in this region.

Region 4

Unfairness in play as meter has crossed +L4 or -L4. | Camp on victim until fairness is restored

2.4.2.6
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Thread Forward Progress

Thread forward progress responsibility lies with the BE thread domain on the processor.
The BE thread forward progress mechanism is essentially the same as in previous
Itanium processors. The BE counts and allows a set number of BE thread switches to a
given thread with no instruction retirement before requiring forward progress. A thread
is considered to be making forward progress if any of the following events are
occurring:

= Retirement of an instruction including a predicated-off instruction
= Completion of an RSE fill/spill

= Delivery of an interruption — may be optionally excluded

Once the threshold of the pre-programmed number of thread switches is exceeded, the
thread forward progress mode is engaged. The thread forward progress mode is
comprised of two primary actions:

= Camp on current thread in the BE until an instruction retires or interruption occurs.

= Request the FE thread switch controller to lock to the BE thread and disable any
further FE thread switch events.

An L2/L3/L4 aggressor will not be allowed to BE forward progress camp until fairness is
restored.

This BE thread forward progress mechanism, once engaged, is deemed sufficient to
ensure that instruction fetch progress in the FE thread domain will occur due to the FE
eventually following the BE thread.

Full Time Slice Mode allows a thread that exits forward progress lock to remain in the
FG for up to a time-slice after it begins to retire instructions. When this feature is
enabled, a thread that exits forward progress mode by retiring an instruction can be
switched to the BG only for the following reasons; FG Blocking, FG Time slice
expiration, BG Time slice expiration, Hint@pause, Halt.lp, Fairness Meter induced
switch events, External interrupt to BG thread.

Intel® Itanium® Processor 9500 Series
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2.4.2.7

2.5

2.5.1

Switch-Delay

Switch-Delay limits the fraction of time spent switching between threads. Thread switch
events that occur during a certain duration (or window) of time after the prior thread
switch receive special treatment.

e When unfairness is Green/Yellow

— Switch-in event (Unstall and ALATinv) induced switches are remembered and
acted upon after the switch-wait window expires

— Switch-out events are unaffected by the window
= When unfairness is Orange/Red

— Blocking induced switches are remembered and acted upon after the switch-
wait window expires

— Hint@pause is ignored (has no effect) within the switch-wait window

— Switch-in events are unaffected by the window

FG and BG timeouts are not affected by the wait window.

Intel® Virtualization Technology

The Intel Itanium processor 9500 series is the fourth Intel® Itanium® processor to
implement Intel® Virtualization Technology, described in the Intel® Itanium®
Architecture Software Developer’s Manual.

The Intel Itanium processor 9500 series provides enhanced Intel® Virtualization
Technology (Intel® VT-i3) and Intel® Virtualization Technology for directed 1/0 (Intel®
VT-d).

The Intel Itanium processor 9500 series core supports all of the baseline virtualization
support provided in the Intel® Itanium® processors 9300 series. In addition, it
implements certain hardware acceleration modes and provides a new Interruption
Instruction Bundle control register. The additional virtualization support attempts to
further reduce the virtualization overhead.

Intel® VT-i3 Support

Summary of enhancements over Intel VT-i3
= Guest copy of interruption control registers (cr16—17,19-27)
= Guest cover

= Asynchronous VINT delivery, directly to Virtual External Interrupt vector
(IVA+0x3400)

* Guest ssm/rsm enhancements

* Guest PSR read (full VPSR)

« Relaxed reserved field checking on mov to psr.l

* Guest tf support (VCPUID4)

* Guest AR.ITC offset (CR.ITO)

= Probe intercepts

= Support illegal op fault on virtual CR access when not in VMAL

« Enhanced bundle capture

Intel® Itanium® Processor 9500 Series 81
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= PMU event filtering on psr.vm

Intel VT-i3 is documented in the Intel Itanium Software Developers Manual and
supplement.

1A-32 Execution

1A-32 execution on the Intel Itanium processor 9500 series is enabled supported with
PAL-based 1A-32 execution and IA-32 Execution Layer (IA-32 EL).

PAL-based 1A-32 execution is available after PAL_COPY_PAL is called and provides IA-
32 execution support before the OS has booted. PAL-based 1A-32 execution is not
supported in an OS environment.

IA-32 EL is a software layer that is currently shipping with Intel® Itanium®
architecture-based operating systems, which converts 1A-32 instructions into Intel®
Itanium® processor instructions via dynamic translation. 1A-32 EL is OS-based and is
only available after an OS has booted.

Brand Information

The PAL_BRAND_INFO procedure, along with PAL_PROC_GET_FEATURES, allows
software to obtain processor branding and feature information. Details on the above
functions can be found in the Intel® Itanium® Architecture Software Developer’s
Manual.

Below is the table of the return values for PAL_BRAND_INFO. The Intel Itanium
processor 9500 series will implement all three; however, some previous Intel®
Itanium® processors are all unable to retrieve the processor frequency, so requests for
these fields will return -6, information not available. Also, previous Intel® Itanium®
processors cannot return system bus frequency speed. Implementation-specific values
are expected to start at value 16 and continue until an invalid argument (-2) is
returned.

PAL_BRAND_INFO Return Values

Value Definition

19 Stepping - terminated ASCII string corresponding to the processor stepping will be returned
in the brand_info return argument.

17 The shared LLC cache size component (in bytes) of the brand identification string will be
returned as a binary value in the brand_info return argument.

16 The frequency component (in Hz) of the brand identification string will be returned as a
binary value in the brand_info return argument.

82

o] The ASCII brand identification string will be copied to the address specified in the address
input argument. The processor brand identification string is defined to be a maximum of 128
characters long; 127 bytes will contain characters and the 128th byte is defined to be NULL
(0). A processor may return less than 127 ASCII characters as long as the string is null
terminated. The string length will be placed in the brand_info return argument.

There are other processor features that may not be included in the brand name above.

To obtain information on if that technology or feature has been implemented, the
PAL_PROC_GET_FEATURES procedure should be used. The Intel® Itanium® processor
9500 series features will be available in feature_set (20).

Intel® Itanium® Processor 9500 Series
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Table 2-53. Intel Itanium Processor 9500 Series Feature Set Return Values

Value

Definition

18

Multi-Threading Technology (MT) — This processor supports Multi-Threading Technology

8
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3 Core Performance Monitoring

3.1 Introduction

This section defines the performance monitoring features of the the processor core. The
the processor core provides 16 48-bit performance counters per thread, hundreds of
monitorable events, and several advanced monitoring capabilities. This chapter outlines
the targeted performance monitor usage models and defines the software interface and
programming model.

The Itanium architecture incorporates architected mechanisms that allow software to
actively and directly manage performance critical processor resources such as branch
prediction structures, processor data and instruction caches, virtual memory
translation structures, and more. To achieve the highest performance levels, dynamic
processor behavior can monitor and be fed back into the code generation process to
better encode observed run-time behavior, or to expose higher levels of instruction
level parallelism. These measurements are critical for understanding the behavior of
compiler optimizations, the use of architectural features such as speculation and
predication, or the effectiveness of microarchitectural structures such as the ALAT, the
caches, and the TLBs. These measurements provide the data to drive application tuning
and future processor, compiler, and operating system designs.

The remainder of the document is split into the following sections:

= Section 3.2 discusses how performance monitors are used, and presents various
the processor performance monitoring programming models.

« Section 3.3 defines the the processor specific performance monitoring features,
structures and registers.

Refer to Appendix B, “Example Core PMU Event Reports” for examples of PMU core
reporting.

3.2 Performance Monitor Programming Models

This section introduces the the processor performance monitoring features from a
programming model point of view and describes how the different event monitoring
mechanisms can be used effectively. The the processor performance monitor
architecture focuses on the following two usage models:

« Workload Characterization: The first step in any performance analysis is to
understand the performance characteristics of the workload under study.
Section 3.2.1 discusses the the processor support for workload characterization.

« Profiling: Profiling is used by application developers and profile-guided compilers.
Application developers are interested in identifying performance bottlenecks and
relating them back to their code. Their primary objective is to understand which
program location caused performance degradation at the module, function, and
basic block level. For optimization of data placement and the analysis of critical
loops, instruction level granularity is desirable. Profile-guided compilers that use
advanced Itanium architectural features such as predication and speculation
benefit from run-time profile information to optimize instruction schedules. The the
processor supports instruction level statistical profiling of branch mispredicts and
cache misses. Details of the the processor's profiling support are described in
Section 3.2.2.
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Workload Characterization

The first step in any performance analysis is to understand the performance
characteristics of the workload under study. There are two fundamental measures of
interest: event rates and cycle accounting.

< Event Rate Monitoring: Event rates of interest include average retired
instructions-per-clock (IPC), data and instruction cache miss rates, or branch
mispredict rates measured across the entire application. Characterization of
operating systems or large commercial workloads (for example, OLTP analysis)
requires a system-level view of performance relevant events such as TLB miss
rates, VHPT walks/second, interrupts/second, or bus utilization rates.
Section 3.2.1.1 discusses event rate monitoring.

= Cycle Accounting: The cycle breakdown of a workload attributes a reason to
every cycle spent by a program. Apart from a program's inherent execution latency,
extra cycles are usually due to pipeline stalls and flushes. Section 3.2.1.4 discusses
cycle accounting.

Event Rate Monitoring

Event rate monitoring determines event rates by reading processor event occurrence
counters before and after the workload is run, and then computing the desired rates.
For instance, two basic the processor events that count the number of retired Itanium
instructions (IA64_INST_RETIRED) and the number of elapsed clock cycles
(CPU_OP_CYCLES) allow a workload's instructions per cycle (IPC) to be computed as
follows:

< IPC = (IA64_INST_RETIREDy; — 1A64_INST_RETIRED;) / (CPU_OP_CYCLES,; —
CPU_OP_CYCLES;)

Time-based sampling is the basis for many performance debugging tools [VTune™,
gprof, WinNT*]. As shown in Figure 3-1, time-based sampling can be used to plot the
event rates over time, and can provide insights into the different phases that the
workload moves through.

Figure 3-1. Time-Based Sampling
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A

Event Rate

Time
Sample Interval

On the processor, many event types, for example, TLB misses or branch mispredicts
are limited to a rate of one per clock cycle. These are referred to as “single occurrence”
events. However, in the the processor, multiple events of the same type may occur in
the same clock. We refer to such events as “multi-occurrence” events. An example of a
multi-occurrence event on the processor is data cache read misses (up to two occur per
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3.2.1.2

3.2.1.3

Table 3-1.

clock). Multi-occurrence events, such as the number of entries in the memory request
queue, can be used to derive the average number and average latency of memory
accesses. The next two sections describe the basic processor mechanisms for
monitoring single and multi-occurrence events.

Single Occurrence Events and Duration Counts

For all single occurrence events, a counter is incremented by up to one per clock cycle.
Duration counters that count the number of clock cycles during which a condition
persists are considered “single occurrence” events. Examples of single occurrence
events on the processor are TLB misses, branch mispredictions, and cycle-based
metrics.

Multi-Occurrence Events, Thresholding, and Averaging

Events that, due to hardware parallelism, may occur at rates greater than one per clock
cycle are termed “multi-occurrence” events. Examples of such events on the processor
are retired instructions or the number of live entries in the memory request queue.

Thresholding capabilities are available in the processor's counters and can be used to
plot an event distribution histogram. When a non-zero threshold is specified, the
monitor is incremented by one in every cycle in which the observed event count
exceeds that programmed threshold. This allows questions such as "For how many
cycles did the memory request queue contain more than two entries?” or "During

how many cycles did the machine retire more than three instructions?" to be answered.
This capability allows microarchitectural buffer sizing experiments to be supported by
real measurements. By running a benchmark with different threshold values, a
histogram can be drawn up that may help to identify the performance "knee" at a
certain buffer size.

For overlapping concurrent events, such as pending memory operations, the average
number of concurrently outstanding requests and the average number of cycles that
requests were pending are of interest. To calculate the average number or latency of
multiple outstanding requests in the memory queue, we need to know the total number
of requests (Ngtg) and the number of live requests per cycle (nje/cycle). By summing
up the live requests (nj/cycle) using a multi-occurrence counter, Znj, is directly
measured by hardware. We can now calculate the average number of requests and the
average latency as follows:

= Average outstanding requests/cycle = Znjj,o/ At

= Average latency per request = Znjjye / Niotal

An example of this calculation is given in Table 3-1 in which the average outstanding
requests/cycle = 15/8 = 1.825, and the average latency per request = 15/5 = 3 cycles.

Average Latency per Request and Requests per Cycle Calculation Example

Time [Cycles] 1 2 3 4 5 6 7 8

# Requests In

# Requests Out

Niive

Niive 12 14 15 15

R|lRr|R|O]| R
N|{w|[N] O] R

w|lo|w|o|r
plo|lw|r|r
w
N
[
o

Ntotal

The processor provides the following capabilities to support event rate monitoring:
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Figure 3-2.
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= Clock cycle counter

* Retired instruction counter

= Event occurrence and duration counters
= Multi-occurrence capable counters

= Counter thresholding

Cycle Accounting

While event rate monitoring counts the number of events, it does not tell us whether
the observed events are contributing to a performance problem. A commonly used
strategy is to plot multiple event rates and correlate them with the measured
instructions per cycle (IPC) rate. If a low IPC occurs concurrently with a peak of cache
miss activity, chances are that cache misses are causing a performance problem. To
eliminate such guess work, the processor provides a set of cycle accounting monitors,
that break down the number of cycles that are lost due to various kinds of
microarchitectural events. As shown in Figure 3-2, this lets us account for every cycle
spent by a program and therefore provides insight into an application's
microarchitectural behavior. Note that cycle accounting is different from simple stall or
flush duration counting. Cycle accounting is based on the machine’'s actual stall and
flush conditions, and accounts for overlapped pipeline delays, while simple stall or flush
duration counters do not. Cycle accounting determines a program'’s cycle breakdown by
stall and flush reasons, while simple duration counters are useful in determining
cumulative stall or flush latencies.

Itanium® Processor Family Cycle Accounting

Inherent Program Execution Data Access |-fetch Branch

. . Other Stalls
Latency Stall Stalls Mispredicts

Cycles Cycles

N

-¢—Unstalled Cycles———p»

Stall Cycles
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The processor cycle accounting monitors account for all major single and multi-cycle
stall, replay and flush conditions both for the front-end as well as the back-end thread
domain. Overlapping stall, replay and flush conditions are prioritized in reverse pipeline
order, that is, delays that occur later in the pipe and that overlap with earlier stage
delays are reported as being caused later in the pipeline. The six back-end stall, replay
and flush reasons are prioritized in the following order:

1. Exception/Interruption flushes: cycles spent flushing the pipe due to interrupts and
exceptions. (event CYC_BE_WB2_FLUSH.XPN Appendix 4.2.4.6)

2. WB2 replays: late pipe events due to FP, exceptions, and blocking hazards (event
CYC_BE_WB2_REPLAY.* Appendix 4.2.4.7)

3. Branch Mispredictions: cycles spent flushing the pipe due to branch mispredicts.
(event CYC_BE_WB2_FLUSH.BRU Appendix 4.2.4.6)

4. DET replays: mostly due to memory pipe hazards (event CYC_BE_DET_REPLAY.*
Appendix 4.2.4.2)

5. EXE replays: mostly register hazards. (event CYC_BE_EXE_REPLAY.*
Appendix 4.2.4.3)
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6. Issue stall cycles due to load hazards, RSE activities, front end bubbles and others.
(event CYC_BE_IBD_STALL.* Appendix 4.2.4.4)

For each of these reasons, a complete set of sub-cause events is available. In addition
to the back-end, execution, cycle accounting, analogous monitors are available to
diagnose front-end fetch performance.

3.2.2 Profiling

Profiling is used by application developers, profile-guided compilers, optimizing linkers,
and run-time systems. Application developers are interested in identifying performance
bottlenecks and relating them back to their source code. Based on profile feedback,
developers can make changes to the high-level algorithms and data structures of the
program. Compilers can use profile feedback to optimize instruction schedules by
employing advanced Itanium architectural features such as predication and
speculation.

To support profiling, performance monitor counts have to be associated with program
locations. The following mechanisms are supported directly by the processor's
performance monitors:

= Program Counter Sampling

= Miss Event Address Sampling: The processor event address registers (EARS)
provide address and latency information for performance critical events (instruction
and data cache accesses, branch mispredicts, and instruction and data TLBSs).

= Event Qualification: constrains event monitoring to a specific instruction address
range, to certain opcodes or privilege levels.

These profiling features are presented in the next three subsections.

3.2.2.1 Program Counter Sampling

Application tuning tools use time-based or event-based sampling of the program
counter and other event counters to identify performance critical functions and basic
blocks. As shown in Figure 3-3, the sampled points can be histogrammed by instruction
addresses. For application tuning, statistical sampling techniques have been very
successful, because the programmer can rapidly identify code hot spots in which the
program spends a significant fraction of its time, or where certain event counts are
high.

Program counter sampling points the performance analysts at code hot spots, but does
not indicate what caused the performance problem. Inspection and manual analysis of
the hot-spot region along with a fair amount of guess work are required to identify the
root cause of the performance problem. On the processor, the cycle accounting
mechanism (described in Section 3.2.1.4) can be used to directly measure an
application's microarchitectural behavior.

The Itanium architectural interval timer facilities (ITC and ITM registers) can be used
for time-based program counter sampling. Event-based program counter sampling is
supported by a dedicated performance monitor overflow interrupt mechanism
described in detail in Section 7.2.2 "Performance Monitor Overflow Status Registers
(PMCq...PMC3)" in Volume 2 of the Intel® Itanium® Architecture Software Developer's
Manual.
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Figure 3-3.
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To support program counter sampling, the processor provides the following
mechanisms:

= Timer interrupt for time-based program counter sampling
= Event count overflow interrupt for event-based program counter sampling

= Hardware-supported cycle accounting

Miss Event Address Sampling

Program counter sampling and cycle accounting provide an accurate picture of
cumulative microarchitectural behavior, but they do not provide the application
developer with pointers to specific program elements (code locations and data
structures) that repeatedly cause microarchitectural "miss events". In a cache study of
the SPEC92 benchmarks, [Lebeck] used (trace based) cache miss profiling to gain
performance improvements of 1.02 to 3.46 on various benchmarks by making simple
changes to the source code. This type of analysis requires identification of instruction
and data addresses related to microarchitectural "miss events" such as cache misses,
branch mispredicts, or TLB misses. Using symbol tables or compiler annotations these
addresses can be mapped back to critical source code elements. Like Lebeck, most
performance analysts in the past have had to capture hardware traces and resort to
trace driven simulation.

Due to the superscalar issue, deep pipelining, and out-of-order instruction completion
of today's microarchitectures, the sampled program counter value may not be related
to the instruction address that caused a miss event. On a Pentium processor pipeline,
the sampled program counter may be off by two dynamic instructions from the
instruction that caused the miss event. On a Pentium Pro processor, this distance
increases to approximately 32 dynamic instructions. On the processor, it is
approximately 48 dynamic instructions. If program counter sampling is used for miss
event address identification on the processor, a miss event might be associated with an
instruction almost five dynamic basic blocks away from where it actually occurred
(assuming that 10% of all instructions are branches). Therefore, it is essential for
hardware to precisely identify an event's address.

The processor provides a set of event address registers (EARs) that record the
instruction and data addresses of data cache accesses, the instruction and data
addresses of data TLB misses, and the instruction addresses of instruction TLB and
cache misses as well as latency and responder type status associated with the access.
A 24 entry deep execution trace buffer captures sequences of branch instructions and
other instructions and events which causes changes to execution flow. The table below
summarizes the capabilities offered by the processor EARs and the execution trace
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buffer. Exposing miss event addresses to software allows them to be monitored either
by sampling or by code instrumentation. This eliminates the need for trace generation

to identify and solve performance problems and enables performance analysis by a
much larger audience on unmodified hardware.

Table 3-2.

Processor EARs and Branch Trace Buffer

Event Address Register

Triggers On

What is Recorded

Instruction Cache

Instruction fetches that miss the FLI cache
(demand fetches only)

Instruction fetch missed FLI ITLB (demand
fetches only)

Instruction Address

Number of cycles fetch was in flight
Responder status of the fetch (who serviced the
miss)

Who serviced L1 ITLB miss: L2 ITLB VHPT or
software

Data Cache

Load or store instructions that hit or miss the
FLD or MLD data caches

Data references to the DTLB
ALAT accesses

Instruction Address

Data Address

Number of cycles load was in flight.

Responder status of the load (who serviced the
request)

Requester op-type (who asked)

Current HWPF hint state

Who serviced L1 DTLB miss: L2 DTLB, VHPT or
software

Execution Trace Buffer

Branch Outcomes

rfi, exceptions, failed "chk" instructions which
cause a change in execution flow

Source instruction address of the event
Target Instruction Address of the event
Mispredict status and reason for branches

Retired IP

Source instruction address of the retired
instruction, cycles since last retirement.

Retired IPs

3.2.3

The processor EARs enable statistical sampling by configuring a performance counter to
count, for instance, the number of data cache miss captures or retired instructions. The
performance counter value is set up to interrupt the processor after a predetermined
number of events have been observed. The data cache event address register
repeatedly captures the instruction and data addresses of actual data cache load
misses. Whenever the counter overflows, event address collection is suspended (this
prevents software from capturing a miss event that might be caused by the monitoring
software itself). When the counter overflows the PMU is frozen, an interrupt is delivered
to software, the observed event addresses are collected, and a new observation
interval can be set up by rewriting the performance counter registers. For time-based
(rather than event-based) sampling methods, the event address registers indicate to
software whether or not a qualified event was captured. Statistical sampling can
achieve arbitrary event resolution by varying the number of events within an
observation interval and by increasing the number of observation intervals.

Event Qualification

In the processor, many of the performance monitoring events can be qualified in a
number of ways such that only a subset of the events are counted using performance
monitoring counters. As shown in the figure below, events can be qualified for
monitoring based on instruction address range, instruction opcode, data address range,
data reference type, the privilege level and virtual machine state and the status of the
performance monitoring freeze bit (PMCg.fr). The following paragraphs describe these
capabilities in more detail.

= Itanium Instruction Address Range Check: The processor allows event monitoring
to be constrained to a programmable instruction address range. This enables
monitoring of dynamically linked libraries (DLLs), functions, or loops of interest in
the context of a large Itanium-based application. The Itanium instruction address
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range check is applied at the instruction fetch stage of the pipeline and the
resulting qualification is carried by the instruction throughout the pipeline. This
enables conditional event counting at a level of granularity smaller than dynamic
instruction length of the pipeline (approximately 48 instructions). For details, see
Section 3.3.5.

Figure 3-4. Processor Event Qualification

Instruction Address Itanium Instruction Is instruction
Address Range Check pointer in IBR range?
. Itanium Instruction Does Opcode
Instruction Opcode —» Opcode Match > Match?
Itanium Data Address Is data address
Data Address —»| Range Check > inDBR range?
(Memory operations) -

Itanium Data Reference .
Is data access in
— Type Check - reftype?
(Memory Operations) pe: |

Memory
Reference type

At monitored

Current Privilege Level —»| Privilege Level Check —» .
privilege level?
I

Current Virtual Machine In monitored
— -

state VM Check VM state?

|
Event —p Event ID —» Did event happen?

|
Performance Monitor Is event monitoring

Freeze Bit (PMC,.fr) —» Event Counter Freeze |—» enabled?

'

Yes, all of the above are true;
This event is counted
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Itanium Instruction Opcode Match: The processor provides two independent Itanium
opcode match ranges each of which match the currently issued instruction encodings
with a programmable opcode match and mask function. The resulting match events can
be selected as an event type for counting by the performance counters. This allows
histogramming of instruction types, usage of destination and predicate registers as well
as software profiling (through insertion of tagged NOPs). Details are described in
Section 3.3.6.

= Itanium Data Address Range Check: The processor allows event collection for
memory operations to be constrained to a programmable data address range. This
enables selective monitoring of data cache miss behavior of specific data
structures. For details, see Section 3.3.7.

= Itanium Data Reference Type Check: The processor allows event collection for
memory operations to be constrained to specific memory pipe operations. For
details, see Section 3.3.7.

= Privilege Level: The processor supports conditional event counting based on the
current privilege level; this allows performance monitoring software to break down
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3.2.3.1

event counts into user and operating system contributions. For details on how to
constrain monitoring by privilege level, refer to Section 3.3.1.

Virtual Machine state: Analogous to privilege level constraints, the processor
supports conditional event counting based on the current virtual machine state
(PSR.vm). This allows performance monitoring software to further break down
event counts into the virtual machine hosts and guest operating system
contributions. For details on how to constrain monitoring by virtual machine state
level, refer to Section 3.3.1.

Performance Monitor Freeze: Event counter overflows or software can freeze event
monitoring. When frozen, no event monitoring takes place until software clears the
monitoring freeze bit (PMCg.fr). This ensures that the performance monitoring
routines themselves, for example, counter overflow interrupt handlers or
performance monitoring context switch routines, do not "pollute" the event counts
of the system under observation. For details, refer to Section 7.2.4 of Volume 2 of
the Intel® Itanium® Architecture Software Developer's Manual.

Combining Instruction Address, Opcode, Data Address and Memory
Reference Type Matching

The processor allows various event qualification mechanisms to be combined in a
daisy-chained manner by providing the instruction tagging mechanism shown in

Figure 3-5.

Figure 3-5. Instruction Tagging Mechanism in the Processor
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During Itanium instruction execution, the instruction address range check is applied
first. This is applied separately for each IBR pair (IBRP) to generate 4 independent tag
bits which flow down the machine in four tag channels. The channel O instruction
address tag is used to qualify front-end events where applicable. Tags in the four tag
channels are then passed to two opcode matchers that combine the instruction address
range check with the opcode match and generate the set of four tags passed to the
back-end. This is done by combining tag channels 0 and 2 with first opcode match
registers and tag channels 1 and 3 with the second opcode match registers as shown in
Figure 3-5. Each of the 4 combined tags in the four tag channels can be counted as a
retired instruction count event (for details refer to event description
"RETIRED_INST_TAGGED" ). Additionally tags O and 1 are used for the
CPU_OP_CYCLES.TAGGED event Appendix 4.2.1.1.

The combined Itanium instruction address range and opcode match in tag channel O
qualify all downstream pipeline events. Events in the data memory hierarchy (L1 and
L2 data cache and data TLB events, can further be qualified using data address range,
specified through the DBRs and data reference type constraints.

As summarized in Figure 3-5, data address range checking can be combined with
opcode matching and instruction range checking on the processor. Additional event
qualifications based on the current privilege level can be applied to all events and are
discussed in Section 3.2.3.2.

Table 3-3 below shows register settings for different qualification scenarios. These are
the preferred settings, though it may be possible to achieve the same functionality with
different settings. Table 3-3’s scenarios apply to tag channel 0. Channels 1-3 can be
constrained analogously for those events that use/require them. These and other
scenarios are left as an exercise to the reader.

Table 3-3. Example Processor Event Qualification Modes (Sheet 1 of 2)

Event Qualification Modes PMC settings Constraints Defined By

Unconstrained Monitoring PMC_IAM_CFG.ig_ibrp =1
PMC_OPMO_MSK.ig_ad = 1
PMC_OPM_CFG.chO_ig_opc =1
PMC_DAM_CFG.cfgdtag0 = 0x18

Instruction Address Range PMC_IAM_CFG.ig_ibrp =0 IBRPO
constraint only PMC_OPMO_MSK.ig_ad = 0
PMC_OPM_CFG.chO_ig_opc =1
PMC_DAM_CFG.cfgdtag0 = 0x08

Opcode constraint only PMC_IAM_CFG.ig_ibrp = 1 PMC_OPMO_MSK
PMC_OPMO_MSK.ig_ad = 1 PMC_OPMO_MAT
PMC_OPM_CFG.chO_ig_opc =0

PMC_DAM_CFG.cfgdtag0 = 0x08

Instruction Address Range and PMC_IAM_CFG.ig_ibrp =0 IBRPO

Opcode constraints PMC_OPMO_MSK.ig_ad = 0 PMC_OPMO_MSK
PMC_OPM_CFG.chO_ig_opc = 0 PMC_OPMO_MAT
PMC_DAM_CFG.cfgdtag0 = 0x08

Data Address Range constraint PMC_IAM_CFG.ig_ibrp =1 DBRPO

only PMC_OPMO_MSK.ig_ad = 1

PMC_OPM_CFG.chO_ig_opc = 1
PMC_DAM_CFG.typemask = 0x0
PMC_DAM_CFG.cfgdtag0 = OxFO

Data Reference Type constraint PMC_IAM_CFG.ig_ibrp =1 PMC_DAM_CFG.typemask
only PMC_OPMO_MSK.ig_ad = 1
PMC_OPM_CFG.chO_ig_opc =1
PMC_DAM_CFG.cfgdtag0 = 0x18
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Table 3-3. Example Processor Event Qualification Modes (Sheet 2 of 2)

Event Qualification Modes PMC settings Constraints Defined By
Instruction and Data Address PMC_IAM_CFG.ig_ibrp =0 IBRPO
Range constraints PMC_OPMO_MSK.ig_ad = 0 DBRPO

PMC_OPM_CFG.chO_ig_opc =1
PMC_DAM_CFG.typemask = 0x0
PMC_DAM_CFG.cfgdtag0 = OxXEO

Opcode and Data Address Range | PMC_IAM_CFG.ig_ibrp = 1 PMC_OPMO_MSK
constraints PMC_OPMO_MSK.ig_ad = 1 PMC_OPMO_MAT
PMC_OPM_CFG.chO_ig_opc = 0 DBRPO

PMC_DAM_CFG.typemask = 0x0
PMC_DAM_CFG.cfgdtag0 = OxXEO

Instruction Address, Opcode, PMC_IAM_CFG.ig_ibrp = 0 IBRPO

Data Address and Data Reference | ppic oPMO MSK.ig_ad = 0 PMC OPMO MSK

Type constraints PMC_OPM_CFG.chO_ig_opc = 0 PMC_OPMO_MAT
PMC_DAM_CFG.cfgdtagO = OxEO DBRPO

PMC_DAM_CFG.typemask

Note: Event address range and optype qualification when PMC.all is set will only produce
expected results if both threads’ constraints are programmed identically. Per-monitor
constraints are applied to the originating thread’s state.

Note: Similarly, to correctly constrain floating events (indicated by the “F” threading attribute
in the event tables), both threads’ constraints must be programmed identically.

3.2.3.2 Privilege Level Constraints

To provide hardware support for various combinations of privilege levels and interrupt
handlers, the Itanium architecture specifies three global bits (PSR.up, PSR.pp, DCR.pp)
and a per-monitor "privileged monitor" bit (PMC;.pm). To break down the performance
contributions of operating system and user-level application components, each monitor
specifies a 4-bit privilege level mask (PMC;.pIm). The mask is compared to the current
privilege level in the processor status register (PSR.cpl), and event counting is enabled
if PMC;.pIm[PSR.cpl] is one. The processor performance monitors control is discussed in
Section 3.3.1.

PMC registers can be configured as user-level monitors (PMC;.pm is 0) or system-level
monitors (PMC;.pm is 1). A user-level monitor is enabled whenever PSR.up is one.
PSR.up can be controlled by an application using the sum/rum instructions. This allows
applications to enable/disable performance monitoring for specific code sections. A
system-level monitor is enabled whenever PSR.pp is one. PSR.pp can be controlled at
privilege level O only by way of the ssm/rsm instructions, which allows monitor control
without interference from user-level processes. The pp field in the default control
register (DCR.pp) is copied into PSR.pp whenever an interruption is delivered. This
allows events generated during interruptions to be broken down separately: if DCR.pp
is 0, events during interruptions are not counted; if DCR.pp is 1, they are included in
the kernel counts.

As shown in Figure 3-6, Figure 3-7, and Figure 3-8, single process, multi-process, and
system-level performance monitoring are possible by specifying the appropriate
combination of PSR and DCR bits. These bits allow performance monitoring to be
controlled entirely from a kernel level device driver, without explicit operating system
support. Once the desired monitoring configuration has been set up in a process'
processor status register (PSR), "regular" unmodified operating context switch code
automatically enables/disables performance monitoring.
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With support from the operating system, individual per-process breakdown of event
counts can be generated as outlined in the performance monitoring chapter of the
Intel® Itanium® Architecture Software Developer's Manual.

Figure 3-6. Single Process Monitor
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Figure 3-7. Multiple Process Monitor
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Figure 3-8. Sy

stem Wide Monitor

(| NG ™
Usef-level, gpl=3 Usef-level, gpl=3 Usef-level, gpl=3
(Applicatign) (Applicatign) (Applicatidn)
Kerngl -level, cpl=0 Kerng¢l -level, cpl=0 Kernel -level, £pl=0
(0S) (0S) (0S)
Interrypt-level] cpl=0 Interrdpt-level] cpl=0 Interrypt -level| cpl=0
(Handlerq) (Handlerg) (Handlerg)
& J
Proc A |Proc B|Proc C Proc A| Proc B|Proc C Proc A|Proc B|Proc C
All PSR.up =1 All PSR.up =1 All PSR.pp =1
PMC.pm =0 PMC.pm =0 PMC.pm =1
PMC.plm = 1000 PMC.plm = 1001 PMC.plm = 1001
DCR.pp=0 DCR.pp =0 DCR.pp =1

3.2.3.3 Vi

To

rtual Machine State Constraints

break down the performance contributions of virtual machine operation, each

monitor specifies a 2-bit virtual machine state mask (PMC;.vm). The mask is compared

to

the current virtual machine state (PSR.vm) and event counting is enabled

accordingly. The processor performance monitors control is discussed in Section 3.3.1.

3.2.3.4 Power State Constraints

To

allow for halted state accounting, the processor provides a count halted event count

qualifier (PMC;.ch) that enables counting during low-power halted state.

3.2.3.5 In

struction Set Constraints

Instruction set constraint is not supported in the processor.
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Performance Monitor State

1A64 Performance Monitoring architecture described in Section 12 and Section 7.2.1 of
Volume 2 of the Intel® Itanium® Architecture Software Developer's Manual 1A64
defines two sets of performance monitor registers; Performance Monitor Configuration
(PMC) registers to configure the monitoring and Performance Monitor Data (PMD)
registers to provide data from the monitors. Additionally, the architecture allows for
architectural as well as model specific registers. Complying with this architectural
definition, the processor provides both kind of PMCs and PMDs. The processor provides
16 48-bit performance counters (PMC/PMD,_;g pairs), and a set of model-specific
monitoring registers.

The table below defines the PMC/PMD register assignments for each monitoring
feature. The interrupt status registers are mapped to PMCq_3. The 16 generic
performance counter pairs are assigned to PMC/PMD,4_,9. The Event Address Registers
(EARs) and the Execution Trace Buffer (ETB) are controlled by their respective
configuration registers in PMC space. Captured event addresses and cache miss
latencies are accessible to software through event address data registers and a
execution trace buffer, addressed in PMD space. On the processor, monitoring of some
events can additionally be constrained to a programmable instruction address range,
by appropriately setting the instruction breakpoint registers (IBR) and the instruction
address range check register (PMC_IAM_CFG) and turning on the checking mechanism
in the opcode matchers. Two opcode match register sets and an opcode match
configuration register allow some events to be further qualified with a programmable
opcode mask. For memory operations, events can subsequently be qualified by a
programmable data address range by appropriate setting of the data breakpoint
registers (DBRs) and the data address range configuration register as well as by data
reference type.

Since the processor is capable of running two threads, it provides the illusion of having
two processors by providing exactly the same set of performance monitoring features
and structures separately for each thread.

Processor Performance Monitor Register Set (Sheet 1 of 2)

Monitoring Feature

Configuration

Registers (PMC) Data Registers (PMD) Description

Interrupt Status

PMCp 12,3 none See Section 3.3.4, “Performance Monitor
Overflow Status Registers (PMCO,1,2,3)”

Event Counters PMC4_19 PMD4_19 See Section 3.3.2, “Performance Counter
Registers”

Instruction Address PMC_IAM_CFG none See Section 3.3.5, “Instruction Address Range

Match Matching”

Opcode Matching PMC_OPM_CFG none See Section 3.3.6, “Opcode Match Check”,

PMC_OPMO_MSK
PMC_OPMO_MAT
PMC_OPM1_MSK
PMC_OPM1_MAT

Data Address Range PMC_DAM_CFG none See Section 3.3.7, “Data Address Range
Match Matching (PMC_DAM_CFG)”
Data Reference Type PMC_DAM_CFG none See Section 3.3.8, “Data Reference Type
Match Matching (PMC_DAM_CFG)”

Instruction EAR

PMC_IEAR_CFG PMD_IEAR_STAT See Section 3.3.9, “Event Address Registers”
PMD_IEAR_IADDR

Data EAR PMC_DEAR_CFG PMD_DEAR_STAT See Section 3.3.11, “Data Cache EAR”
PMD_DEAR_IADDR
PMD_DEAR_DADDR
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Processor Performance Monitor Register Set (Sheet 2 of 2)

Monitoring Feature

Configuration
Registers (PMC)

Data Registers (PMD)

Description

Branch Trace Buffer

PMC_ETB_CFG

PMD_ETB_BUFIDX
PMD_ETBg_p3
PMD_ETBEXTg_»3

See Section 3.3.12, “Execution Trace Buffer”

Retired IP EAR

PMC_IPEAR_CFG

PMD_ETB_BUFIDX
PMD_ETBg_3
PMD_ETBEXTg 53

See Section 3.3.12.2, “IP Event Address
Capture (IP-EAR)”

Thread Switch EAR

PMC_IPEAR_CFG
PMC_BEMT_CTL

PMD_ETB_BUFIDX
PMD_ETBg_p3
PMD_ETBEXTg_»3

See Section 3.3.12.3, “IP-EAR User Guide”

This document refers to the non-generic PMCs and PMDs by their functional names
rather than the PMC/PMD numbers; the table below is intended to serve as a cross

reference.
Table 3-5. Processor Implementation Specific PMC/PMD Numbering
Feature Functional Name PMC/PMD Notes

Instruction EAR PMC_IEAR_CFG PMC3;, Instruction Cache EAR Configuration
PMD_IEAR_STAT PMD35» Instruction Cache EAR Status
PMD_IEAR_IADDR PMDg33 Instruction Cache EAR Instruction Address

Data EAR PMC_DEAR_CFG PMC3q4 Data Cache EAR Configuration
PMD_DEAR_STAT PMD34 Data Cache EAR Status
PMD_DEAR_DADDR PMDgg Data Cache EAR Data Address
PMD_DEAR_IADDR PMD3g Data Cache EAR Instruction Address

Execution Trace Buffer PMC_ETB_CFG PMC37 ETB Configuration

Retired IP-EAR PMC_IPEAR_CFG PMC3g IP-EAR Configuration
PMC_ETB_BUFIDX PMD3, ETB/IP-EAR Buffer Index
PMD_ETBg_53 PMDg,4_g7 ETB/IP-EAR Buffer
PMD_ETBEXTq_o3 PMD15g_151 ETB/IP-EAR Buffer Extension

Opcode Matching PMC_OPMO_MSK PMCy4o Opcode Matcher O Mask Register
PMC_OPMO_MAT PMCy4q Opcode Matcher O Match Register
PMC_OPM1_MSK PMCy4, Opcode Matcher 1 Mask Register
PMC_OPM1_MAT PMCy3 Opcode Matcher 1 Match Register

Instruction Address Matching PMC_IAM_CFG PMCyg Instruction Address Matcher Configuration

Opcode Matching PMC_OPM_CFG PMCy4g Opcode Matcher Configuration

Data Address Matching PMC_DAM_CFG PMCgq Data Address Matcher Configuration

Interrupt Event Mask PMC_IVAEV_MSK PMCs, Interrupt Event Configuration

Thread State Event Control PMC_BEMT_CTL PMCs3 Thread State Event Configuration

The figure below gives an overview of the processor Performance Monitor register map:
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Figure 3-9. Processor Performance Monitor Register Mode

Perf. Counter Overflow 9500 series
Status Regs Performance Monitoring
pmc 0 Generic Reg Set
pmc 1
pmc 2 Processor Status Reg
pmc 3 PSR
Perf. Counter Perf. Counter
Conf. Regs. Data Regs Default ConfRegq.
pmc4 pmd4 | DCR
pmc5 pmd5
__________ Perf. Mon. Vector Reg
pmcl9 pmd19 | PMV
I- Cache EAR Config |- Cache EAR Data 9500 series
pmc32 | pmd32 Specific Performance
D- Cache EAR Config pmd33 Monitoring RegSet
pmc34 | D- Cache EAR Data
ETB Config gmggg
| pme37 | omd3e
IP- EAR Config
| pmc38 | ETB/IP- EAR Index
pmd37
Opcode Match
Conf. Regs. ETB/IP- EAR Data ETB/IP- EAR Ext Data
pmc40 pmd 64 pmd128
pmc4l pmd65 pmd129
pmc42 | | ----- e
pmc43 pmd87 pmdi151
Filter Conf Regs Interrupt Event Conf
pmc48 pmc52
pmc49 BE MT Conf
pmc50 | pmc53
3.3.1 Performance Monitor Control and Accessibility

As in other Intel Itanium processors, in the processor event collection is controlled by
the Performance Monitor Configuration (PMC) registers and the processor status
register (PSR). Five PSR fields (PSR.up, PSR.pp, PSR.cpl, PSR.vm and PSR.sp) and the
performance monitor freeze bit (PMCy.fr) affect the behavior of all performance

monitor registers.

Per-monitor control is provided by three PMC register fields (PMC;.pIm, PMC;.vm, and
PMC;.pm). Event collection for a monitor is enabled under the following constraints on

the processor:

vmmatch = PMCi.vm[PSR.vm] OR PMCi.vm ==

Monitor Enablei = (not PMCO.fr) and
PMCi.plm[PSR.cpl] and
vmmmatch] and
((not PMCi.pm and PSR.up) or
( PMCi.pm and PSR.pp)) and
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(not halted or PMCi.ch)

Figure 3-10 defines the PSR control fields that affect performance monitoring. For a
detailed definition of how the PSR bits affect event monitoring and control accessibility
of PMD registers, please refer to Section 3.3.2 and Section 7.2.1 of Volume 2 of the
Intel® Itanium® Architecture Software Developer's Manual.

Figure 3-10. Processor Status Register (PSR) Fields for Performance Monitoring

31 28 27 2 21 20 19 13 12 6 5 3 2 1 0
ot
reserved other pp | sp other reserved other up |y v
63 47 46 45 % 38 R
v
reserved m other cpl

Table 3-6.

Table 3-6 defines per monitor controls that apply to PMCy4_19 32 34 37,38- As defined in
Table 3-4, “Processor Performance Monitor Register Set"”, each of these PMC registers
controls the behavior of its associated performance monitor data registers (PMD). The
processor model-specific PMD registers associated with instruction/data EARs and the
branch trace buffer should be read only when event monitoring is frozen (PMCq.fr is
one).

Any PMC fields labeled "ignore" or "ig" are ignored on writes and should be treated as
don’t care on reads.

Performance Monitor PMC Register Control Fields (PMC,4_49)

Field

Bits

Description

vm

34:33

Virtual machine mask — Controls performance monitor operation relative to the virtual machine state. Each
of the two bits corresponds to one of the states of PSR.vm. A mask bit value of 1 indicates that the monitor is
enabled at that vm state.

01 — enable when psr.vm is off
10 — enable when psr.vm is set
11/00 — enable regardless of psr.vm

pm

Privileged monitor — When 0, the performance monitor is configured as a user monitor and enabled by
PSR.up. When PMC.pm is 1, the performance monitor is configured as a privileged monitor, enabled by
PSR.pp, and PMD can only be read by privileged software. Any read of the PMD by non-privileged software in
this case will return 0.

plm

3:0

Privilege Level Mask — Controls performance monitor operation for a specific privilege level. Each bit
corresponds to one of the 4 privilege levels, with bit O corresponding to privilege level 0, bit 1 with privilege
level 1, etc. A bit value of 1 indicates that the monitor is enabled at that privilege level. Writing zeros to all
plm bits effectively disables the monitor.

NOTE: With plm set to 0, the processor may not preserve the value of the corresponding PMD register(s).

3.3.1.1

3.3.2

Notes on the Execution Trace Buffer

Performance Counter Registers

Performance Monitors are not shared between hardware threads. Each hardware
thread has its own set of 16 generic performance counter (PMC/PMD,4_;g) pairs.
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PMC/PMD pairs are not entirely symmetrical in their ability to count events. Please refer
to Section 3.3.3 for more information.

The figure and table below define the layout of the processor Performance Counter
Configuration Registers (PMC4_;g). The main task of these configuration registers is to
select the events to be monitored by the respective performance monitor data
counters. The event selection (es) and unit mask (umask) in the PMC registers perform
the selection of the event. The rest of the fields in PMCs specify under what conditions
the counting should be done (plm, pm, vm, ch, all), how the counter should be
incremented (thresh), and what needs to be done if the counter overflows (0i).

Figure 3-11. Processor Generic PMC Registers (PMC4_419)
35 34 33 R 23 20 19 16 15 8 7 6 5 4 3 0
. 3 a p . rs
ig |[al| vm |ch ig thresh | umask es ig | o]y plm
2 4 4 8 4
Table 3-7. Processor Generic PMC Register Fields (PMC,4_19)
Field Bits Description
all 35 All threads; This bit selects whether or not to monitor just the self thread or both threads.
If 1, events from both threads are monitored; If O, only self thread is monitored.
vm 34:33 Virtual Machine Mask — This field control counting based on the psr.vm filed value.
ch 32 Count Halted state — if this bit is set, counting during low-power halted state is enabled
thresh 23:20 Threshold — Enables thresholding for "multi-occurrence” events. When threshold is zero, the
counter sums up all observed event values. When the threshold is non-zero, the counter increments
by one in every cycle in which the observed event value exceeds the threshold.
umask 19:16 Unit Mask — Combined with .es selects the performance event to be monitored.
es 15:8 Event select — Combined with .umask selects the performance event to be monitored.
pm 6 Privileged Monitor. See Table 3-6.
oi 5 Overflow interrupt — When 1, a Performance Monitor Interrupt is raised and the performance
monitor freeze bit (PMCy.fr) is set when the monitor overflows. When 0, no interrupt is raised and
the performance monitor freeze bit (PMCg.fr) remains unchanged. Counter overflows generate only
one interrupt. Setting the corresponding PMCq bit on an overflow will be independent of this bit.
plm 3:0 Privilege Level Mask. See Table 3-6.
The figure and table below the layout of the processor Performance Counter Data
Registers (PMDy4_19)- A counter overflow occurs when the counter wraps (i.e., a carry
out from bit 46 is detected). Software can force an external interruption or external
notification after N events by preloading the monitor with a count value of 247 _N.
When accessible, software can continuously read the performance counter registers
PMD,_19 without disabling event collection. Any read of the PMD from software without
the appropriate privilege level will return O (See "pIm" in table above). The processor
ensures that software will see monotonically increasing counter values.
Figure 3-12. Processor Generic PMD Registers (PMD,4_49)
63 47 46 0
ig Count
17 47
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Table 3-8.

intel.

Processor Generic PMD Register Fields

Field

Bits

Description

count

46:0

Event Count. The counter is defined to overflow when the count field wraps (carry out from bit 46).

3.3.3

3.3.4

Performance Monitor Event Counting Restrictions

Overview

Similar to other Itanium processors, not all performance monitoring events can be
monitored using any generic performance monitor counters (PMD,4_;g). The following
need to be noted when determining which counter to be used to monitor events.

The processor supports a large number of performance events that are collected in a
decentralized manner. Many constraints posed by previous Intel Itanium generations
were eliminated. In turn, the processor poses some restriction in terms of counter

associativity.

Each events counter affinity is indicated by the counter affinity field in the event
description table. The field is a hexadecimal number, where a set bit i indicates that
PMC/PMD pair i can count the event. For example, a value of 0x05550 means PMDq 4
12, 10, 8, 6 and 4 Can count this particular event.

The associativity was designed to allow significant flexibility.

More details can be found in the Performance Monitor Event Section (Appendix 4.1.5).

Performance Monitor Overflow Status Registers

(PMCp 1,2,3)

As previously mentioned, the processor supports 16 performance monitoring counters
per thread. The overflow status of these 16 counters is indicated in register PMCq. As
shown in the figure and table below, only PMCy[19:4,0] bits are populated. All other
overflow bits are ignored, i.e., they read as zero and ignore writes.

Figure 3-13. Processor Performance Monitor Overflow Status Registers (PMCq 1 5 3)

63 20 19 4 3 1 0
ig Overflow ig fr
16 3
ig (PMCy)
ig (PMCy)
ig (PMCs3)
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Processor Performance Monitor Overflow Register Fields (PMCq 1 > 3)

Register

Field Bits Description

PMCy 53

ig

63:0 Read zero, Writes ignored.

PMCq

ig

63:20 Read zero, Writes ignored.

PMCq

overflow 19:4 Event Counter Overflow — When bit n is one, indicate that the PMD,, overflowed. This

is a bit vector indicating which performance monitor overflowed. These overflow bits

are set on their corresponding counters overflow regardless of the state of the PMC.oi
bit. Software may also set these bits. These bits are sticky and multiple bits may be

set.

PMCq

3:1 Read zero, Writes ignored.

PMCq

fr

0 Performance Monitor "freeze" bit — When 1, event monitoring is disabled. When 0,
event monitoring is enabled. This bit is set by hardware whenever a performance
monitor overflow occurs and its corresponding overflow interrupt bit (PMC.oi) is set to
one. SW is responsible for clearing it. When the PMC.oi bit is not set, then counter
overflows do not set this bit.

3.3.5

3.3.5.1

104

Instruction Address Range Matching

The processor allows event monitoring to be constrained to a range of instruction
addresses. Once programmed with these constraints, only the events generated by
instructions with their addresses within this range are counted using PMD,_;9 and
tracked by the instruction cache, data cache and IP EAR as well as the ETB. The four
architectural Instruction Breakpoint Register Pairs IBRPy_3 (IBRg_7) are used to specify
the desired address ranges. Using these IBR pairs it is possible to define up to 4
different address ranges (or 2 address ranges in "fine mode") that can be used to
qualify event monitoring.

Once programmed, each of these 4 address restrictions can be applied separately to all
events that are identified to do so. The event, 1A64_INST_RETIRED, is the only event
that can be constrained using any of the four address ranges. Events described as
instruction prefetch events can only be constrained using the address range 2 (IBRP1).
All other events can only use the first address range (IBRPO) and this range will be
considered as the default for this section.

In addition to constraining events based on instruction addresses, the processor allows
event qualification based on the opcode of the instruction, and, if applicable, the data
reference address and data reference type. These are done by applying these
constraints to the same 4 instruction address ranges described in this section. These
features are explained in Section 3.3.6, “Opcode Match Check”, Section 3.3.7, “Data
Address Range Matching (PMC_DAM_CFG)”, and Section 3.3.8, “Data Reference Type
Matching (PMC_DAM_CFG)”. See also Section 4.2.7.2, “Asynchronous Data References
and Event Matching Constraints” for important information regarding opcode matching
and data reference events.

PMC_IAM_CFG

The Performance Monitoring Instruction Address Match Configuration register is the
main control register for Instruction Address Range matching feature. In addition to
this register, PMC_OPMO_MSK also controls certain aspects of this feature as explained
below.

Figure 3-14 and Table 3-10 describe the fields of PMC_IAM_CFG.

Instruction address range checking is controlled by the "ignore address range check"
bit (PMC_OPMO_MSK.ig_ad and PMC_IAM_CFG.ig_ibrp0). When
PMC_OPMO_MSK.ig_ad is one (or PMC_IAM_CFG.ig_ibrpO is one), all instructions are
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included (i.e. un-constrained) regardless of IBR settings. When both
PMC_OPM_CFG.ig_ad and PMC_IAM_CFG.ig_ibrp0 are zero, the instruction address
range check based on the IBRPO settings is applied to all Itanium code fetches.

The processor compares every Itanium instruction fetch address IP{63:0} against the
address range programmed into the architectural instruction breakpoint register pair
IBRPj. Regardless of the value of the instruction breakpoint fault enable (IBR x-bit),
the following expression is evaluated for the processor's IBRPg:

match(IP, PSR.cpl, IBRO.addr, IBR1.mask, IBR1.plm) =
(IP[63:56] == IBR0O.addr[63:56]) &&
((IP[55:4] & IBR1.mask[55:4]) == (IBRO.addr[55:4] & IBR1.mask[55:4])) &&
(IBR1.pIm[PSR.cpl] == 1)

For further details refer to chapter 7 in the 2.3 Intel® Itanium® Architecture Software
Developer’s Manual.

The events which occur before the instruction dispersal stage will fire only if this
qualified match (IBRmatch) is true. This qualified match will be combined with the
result of Opcode Matcher O PMC_OPMO_MSK, PMC_OPMO_MAT before being passed
down the pipeline. The events which occur after instruction dispersal stage will use this
new qualified match (IBRPO-OpCodeO match).

Figure 3-14. Instruction Address Range Configuration Register (PMC_1AM_CFG)

Table 3-10.

63 15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

ig ‘ pte ‘ ig ‘ fine ‘ ig ‘ ibrp3‘ ig ‘ibrpZ‘ ig ‘ibrpl‘ ig ‘ibrpo‘ ig ‘

Instruction Address Range Configuration Register Fields

Field

Bits Description

pte

15

Prefetch Tag Enable — Enable RIL tagging of instruction prefetches.
If set, this bit causes the ring interface logic to tag all instruction prefetches sourced by the MLI.

fine

13

Enable fine-mode address range checking (non power of 2)

1: IBRPg » and IBRP; 3 are paired to define two address ranges

0: Normal mode

If set to 1, IBRPO and IBRP2 define the lower and upper limits for address range O respectively;
Similarly, IBRP1 and IBRP3 define the lower and upper limits for address range 1.

Bits [63:16] of upper and lower limits need to be exactly the same but could have any value.
Bits[15:4] of upper limit needs to be greater than bits[15:4] of lower limit. If an address falls in the
range defined by and including the upper and lower limits, then a match will be signaled only in
address ranges 0 or 1. Any event qualification based on address ranges 2 and 3 are not defined.

NOTE:
The mask bits programmed in IBRs 1,3,5,7 for bits [15:4] have no effect in this mode.

When using fine mode address range 0, it is necessary to program both
MC_IAM_CFG.ig_ibrp0,ig_brp2 to 0. Similarly, when using address range 1, it is necessary to set
both PMC_IAM_CFG.ig_ibrp1,ig_ibrp3 to 0.

ig_ibrp3

10

1: No constraint
: Address range 3 based on IBRP3 is enabled

ig_ibrp2

: No constraint
: Address range 2 based on IBRP2 is enabled

ig_ibrp1l

: No constraint
: Address range 1 based on IBRP1 is enabled

ig_ibrp0

: No constraint
: Address range 0 based on IBRPO is enabled

ORr|ORr|ORrR|O
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The IBRPy match is generated in the following fashion. Note that unless fine mode is
used, arbitrary range checking cannot be performed since the mask bits are in powers
of 2. In fine mode, two IBR pairs are used to specify the upper and lower limits of a
range within a 64kB region (the upper bits of lower and upper limits must be exactly
the same).

if PMC_IAM CFG.Fine=0,
IBRmatchO = match(IP(63:0), PSR.cpl, IBRO(63:0), IBR1(55:0), IBR1l.plm)
else,
IBRmatchO = match (IP(63:16), PSR.cpl, IBR0O(63:16), IBR1(55:16), IBR1l.plm)
and (IP(15:4) >= IBRO(15:4))
and (IP(15:0) <= IBR4(15:4))

ibrpOmatch = (PMC_OPMO_MSK.ig ad and
PMC IAM CFG.ig ibrp0) or
IBRmatchO

The instruction range checking considers the address range specified by IBRPi only if
PMC_OPMO_MSK.ig_ad(for i=0) and PMC_IAM_CFG.ig_ibrpi are O.

Use of IBRPO for Instruction Address Range Check — Exception 1

The address range constraint for instruction prefetch events is on the target address of
these events rather than the address of the prefetch instruction. Therefore, IBRP; must
be used for constraining these events. Calculation of IBRP; match is the same as that
of IBRPy match with the exception that we use IBR; 3 g instead of IBRg 1 4.

Use of IBRPO for Instruction Address Range Check — Exception 2

The Address Range Constraint for RETIRED_INST_TAGGED event uses all four IBR pairs
with a distinct subevent for each pair. Calculation of IBRP, match is the same as that of
IBRPy match with the exception that IBR, 5 (in non-fine mode) are used instead of
IBRg 1. Calculation of IBRP3; match is the same as that of IBRP; match with the
exception that we use IBRg 7 (in non-fine mode) instead of IBR5 3.

The instruction range check tag is computed early in the processor pipeline and
therefore includes speculative, wrong-path as well as predicated off instructions.

As described in Section 3.2.3.1, “Combining Instruction Address, Opcode, Data Address
and Memory Reference Type Matching”, the instruction range check result may be
combined with the results of the 1A-64 opcode match registers described in the next
section.

Fine Mode Address Range Check

In addition to providing coarse address range checking described above, the processor
can be programmed to perform address range checks in fine mode. The processor
provides the use of two address ranges for fine mode. The first range is defined using
IBRPO and IBRP2 while the second is defined using IBRP1 and IBRP3. When properly
programmed to use address range 0, all performance monitoring events that have been
indicated to be able to qualify with IBRPO would now qualify with this new address
range (defined collectively by IBRPO and IBRP2). Similarly, when using the address
range 1, all events that could be qualified with IBRP1, now get qualified with this new
address range.
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3.3.6

3.3.6.1

A user can configure the processor PMU to use fine mode address range O by following
these steps:

= Program IBRPO and IBRP2 to define the instruction address range.

= Program PMC_OPMO_MSK]Jig_ad,inv] = '00 to turn off default tags injected into tag
channel O

< Program PMC_IAM_CFGIig_ibrp0,ig_ibrp2] = '00 to turn on address tagging based
on IBRPO and IBRP2.

e Program PMC_IAM_CFG.fine = 1

Similarly, a user can configure the processor PMU to use fine mode address range by
following the same steps as above but this time with IBRP1 and 3. The only exception is
that PMC_OPM1_MSK.[ig_ad,inv] need not be programmed.

Opcode Match Check

As shown in Figure 3-5, event monitoring can be constrained based on the Itanium
encoding of an instruction. Registers PMC_OPM{0,1}_{MSK,MAT} and PMC_OPM_CFG
allow configuring this feature. In the processor, registers PMC_OPMO_MSK,
PMC_OPMO_MAT and PMC_OPM1_MSK, PMC_OPM1_MAT define 2 opcode matchers
(Opcode matcher O (OpMO0) and Opcode Matcher 1 (OpM1)). Register PMC_OPM_CFG
controls how to apply opcode range checking to the four instruction address ranges
defined by using IBRPs.

(See Section 4.2.7.2, “Asynchronous Data References and Event Matching Constraints”
for important information regarding opcode matching and data reference events.)

PMC_OPM{0,1} {MSK,MAT}

Figure 3-15, Figure 3-16 and Table 3-11, Table 3-12 describe the fields of the opcode
matcher mask and match registers. Figure 3-17 and Table 3-13 describes the opcode
matcher configuration register.

All combinations of setting for PMC_OPMx_MSK.{m,i,f,b} are supported. To match a A-
slot instruction, it is necessary to set both PMC_OPMx_MSK.{m,i} to 1. To match all
instruction types, all of PMC_OPMx_MSK.{m,i,f,b} should be set to 1. To ensure that all
events are counted independent of the opcode matcher, all mifb and all mask bits of
PMC_OPMx_MSK should be set to 1 (all opcodes match) while keeping the inv bit
cleared.

Once the opcode matcher constraints are generated, they are ANDed with the address
range constraints available on 4 IBRP channels to form 4 combined address range and
opcode match ranges as described. The constraints defined by OpMO are ANDed with
address constraints defined by IBRPO and IBRP2 to form combined constraints for
channels 0 and 2. Similarly, the constraints defined by OpM1 are ANDed with address
constraints defined by IBRP; and IBRP3 to form combined constraints for channels 1
and 3.

Figure 3-15. Opcode Matcher Mask Registers

63 58 57 56 55 52 51 50 49 48 47 41 40 0

ig ‘igfad‘inv‘ ig ‘m‘i‘f‘b‘ ig ‘ mask

4 4 7 41
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Table 3-11. Opcode Matcher Mask Register Fields

Field Bits Description

ig_ad 57 Ignore Instruction Address Range Checking for tag channelO

If set to 1, all instruction addresses are considered for events.

If 0, IBRs 0—1 will be used for address constraints.

NOTE: This bit is not implemented in PMC_OPM1_MSK, but behaves as if set to O.

inv 56 Invert Range Check. for tag channel O
If set to 1, the address ranged specified by IBRPO is inverted. Effective only when ig_ad bit is set to O.
NOTE: This bit is not implemented in PMC_OPM1_MSK, but behaves as if set to 0.

m 51 If 1: match if opcode is an M-slot
i 50 If 1: match if opcode is an I-slot
f 49 If 1: match if opcode is an F-slot
b 48 If 1: match if opcode is an B-slot
mask 40:0 Bits that mask Itanium® instruction encoding bits. Any of the 41 syllable bits can be selectively masked.

If mask bit is set to 1, the corresponding opcode bit is not used for opcode matching.

Figure 3-16. Opcode Matcher Match Registers

63 41 40 0

ig match

23 41

Table 3-12. Opcode Matcher Match Register Field

Field Bits Description

match 40:0 Opcode bits against which to match the Itanium instruction encoding
Each opcode bit has a corresponding bit position here.

3.3.6.2 PMC_OPM_CFG

The Performance Monitoring Configuration register PMC_OPM_CFG controls whether or
not to apply opcode matching in event qualification. As mentioned earlier, opcode
matching is applied to the four instruction address ranges defined by using IBRPs.

Figure 3-17. Opcode Match Configuration Register

63 4 3 2 1 0

Ch3_ig | Ch2_ig | Chl_ig | ChO_ig
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Table 3-13. Opcode Match Configuration Register Fields

Field Bits Description
ig 63:4 Ignored bits
Ch3_ig_OpC 3 1: Tag channel3 events (RETIRED_INST_TAGGED.IAM3_OPM1) won't be constrained by opcode
0: Tag channel2 events will be opcode constrained by OpM1
Ch2_ig_OpC 2 1: Tag channel2 events (RETIRED_INST_TAGGED.IAM2_OPMO) won't be constrained by opcode
0: Tag channel2 events will be opcode constrained by OpMO
Chl_ig_OPC 1 1: tag channell events (RETIRED_INST_TAGGED.IAM1_OPM1) won't be constrained by opcode
0: tag channell events will be opcode constrained by OpM1
ChO_ig_OPC (o] 1: Tag channelO PMU events will not be constrained by opcode
0: Tag channelO PMU events (including RETIRED_INST_TAGGED.IAMO_OPMO) will be opcode
constrained by OpMO
For opcode matching purposes, an Itanium instruction is defined by two items: the
instruction type "itype" (one of M, I, F or B) and the 41-bit encoding "enco{40:0}"
defined the Intel® Itanium® Architecture Software Developer's Manual. Each
instruction is evaluated against each opcode match register (OpCMO and OpCM1) as
follows:
Match (OpCM[i]) = imatch(itype, OpCMI[i] .mifb) AND
ematch (enco,OpM[i] .match,OpM[i] .mask))
Where:
imatch(itype,OpCMi.mifb) = (itype=M AND PMC OPMi MSK.m) OR
(itype=I AND PMC_OPMi_ MSK.i) OR
(itype=F AND PMC_OPMi MSK.f) OR
(itype=B AND PMC_OPMi_ MSK.b)
ematch (enco, match, mask) = AND b=40..0 ((enco{b}=match{b}) OR mask{b})
The IBRP matches are advanced with the instruction pointer to the point where opcodes
are being dispersed. The matches from opcode matchers are ANDed with the IBRP
matches at this point.
This produces two opcode match events that are combined with the instruction range
check tag (IBRRangeTag, see Section 3.3.5, “Instruction Address Range Matching”) as
follows:
Tag (IBRChnl0) = Match(OpCMO0) and IBRRangeTagO
Tag (IBRChnll) = Match(OpCM1l) and IBRRangeTagl
Tag (IBRChnl2) = Match(OpCMO0) and IBRRangeTag2
Tag (IBRChnl3) = Match(OpCM1l) and IBRRangeTag3
As shown in Figure 3-5, the 4 tags, Tag(IBRChnli; i=0-3) are staged down the
processor pipeline until instruction retirement and can be selected as a retired
instruction count event (see event description "RETIRED_INST_TAGGED"). In this way,
a performance counter (PMC/PMD,4_;g) can be used to count the number of retired
instructions within the programmed range that match the specified opcode(s).
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Data Address Range Matching (PMC_DAM_CFG)

For instructions that reference memory, the processor allows event counting to be
constrained by data address ranges. The 4 architectural Data Breakpoint Registers
(DBRs) can be used to specify the desired data address range. The actual range is
defined as the OR combination of the DBRPs used. For further qualifications selected
via this register, refer to Section 3.3.8, “Data Reference Type Matching
(PMC_DAM_CFG)”. See also Section 4.2.7.2, “Asynchronous Data References and
Event Matching Constraints” for important information regarding data address range
matching and data reference events.

Figure 3-18 and Table 3-14 describe the fields of register PMC_DAM_CFG.

Figure 3-18. Data Address Match Configuration Register

63 49 48 32 31 24 23 16 15 87 0
typemask ignored ‘ cfg dtag3 ‘ cfg dtag2 ‘ cfg dtaglJ cfg dtag0
—=
- 1
- 1
7 -8 5 4 3 U]
’/
‘r‘w‘en‘ii‘ig‘ ign‘in‘

Table 3-14. Memory Pipeline Event Constraints Fields (PMC_DAM_CFG) (Sheet 1 of 2)

Field Bits Description

typemask 63:49 Memory Optype Mask — this is a bit-vector to constrain the filtering for PMU, data EAR, and data
debug triggers to specific memory pipe operations. Any number or combination of these bits may be
set, permitting any arbitrary group of operations to cause triggers. A value of all Os for this field
indicates that data optype constraints are disabled. However, a value of all 1s will filter out some
operations as the typemask does not represent all memory operations.
Note that this type mask applies to all four DBRs. Matches on specific DBRs are further constrained
by the r and w bits described below.
63 — misc DTB ops (thash, ttag, tak, tpa, probe)
62 — DTB TLB transfers
61 — PTCs and PTRs
60 — snhoops
59 — LOAD_HPW
58 — HW_PREF
57 —fc
56 — SEMAPHORE
55 — LFETCH
54 — STORE_RSE
53 — STORE_FP
52 — STORE_INT
51 — LOAD_RSE
50 — LOAD_FP
49 — LOAD_INT

cfgdtag3 31:24 These bits determine whether and how DBRP3 should be used for constraining memory pipeline
events, for PMU tagging, data EAR tagging, and/or data debug triggers. The bits match those
defined below for DBRPg; simply add 24 to the bit number in cfgdtagO to get the corresponding bit
position in cfgdtag3.

cfgdtag2 23:16 These bits determine whether and how DBRP, should be used for constraining memory pipeline
events, for PMU tagging, data EAR tagging, and/or data debug triggers. The bits match those
defined below for DBRPg; simply add 16 to the bit number in cfgdtagO to get the corresponding bit
position in cfgdtag?2.

cfgdtagl 15:8 These bits determine whether and how DBRP, should be used for constraining memory pipeline
events, for PMU tagging, data EAR tagging, and/or data debug triggers. The bits match those
defined below for DBRPg; simply add 8 to the bit number in cfgdtagO to get the corresponding bit
position in cfgdtagl.
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Table 3-14. Memory Pipeline Event Constraints Fields (PMC_DAM_CFG) (Sheet 2 of 2)

Field

Bits Description

cfgdtag0

7:0 These bits determine whether and how DBRPq should be used for constraining memory pipeline

events, for PMU tagging, data EAR tagging, and/or data debug triggers. The individual bits are as
follows:

0 — in: Invert the sense of the address match (i.e. matching addresses will not trigger a DBR
match; all other addresses will cause a DBR match)

3 — id: Ignore the generated data match (data address, privilege, and read/write)

4 — ii: Ignore the inbound syllable tag (instruction address & opcode match)

5 — en: Enable DBRPO - operations that match DBRy/Ro/W/typemask get tagged for PMU and/or
data EAR

6 — wO:Write bit for PMU, data EAR (enable write type operations to be tagged, analogous to the
DBR.w bit)

7 — r0: Read bit for PMU, data EAR (enables read type operations to be tagged, analogous to the
DBR.r bit

Note that the DBRs are overloaded to detect address matches for several different
features. Firmware must ensure that any particular DBR is not configured for two
conflicting uses at the same time.

In particular, in order to allow simultaneous use of some DBRs for Performance
Monitoring and the others for debugging (the architected purpose of these registers),
separate mechanisms are provided for enabling DBRs. For example, the DBR r/w bits
must be cleared to 0 for DBRs which are going to be used for the PMU. PSR.db bit has
no effect when DBRs are used for this purpose.

The various features are listed below, together with the bits which configure a DBR to
be used for that particular feature, and the bits which configure matches for that
feature:

« Architected data debug breakpoint faults:
— enabled by the architected DBR,.r and DBR,.w bits (depending on instruction
type);
— matching addresses are selected via the architected DBR,.addr and DBR,.mask
fields;
— matching privilege levels are selected via the architected DBRy.plm field.

< PMU matches:
X is 0..3, depending on the applicable DBR

— enabled by the rx and wx bits in this register (depending on instruction type);

— matching addresses and privilege levels are selected as described above for
data debug faults, with the addition that bit O of the cfgdtagx field in this
register allows the sense of the address match to be inverted;

— matching operations must also be one of the types selected by the typemask
field in this register;

— HOWEVER, if the ignore data match bit (cfgdtagx.id) in this register is set, all of
the above enabling and matching logic is disabled, and a PMU match will be
generated based solely on the inbound syllable tag and master PMU enable bit
(below);

— matching operations must also have a syllable tag, unless the ignore inbound
syllable tag bit (cfgdtagx.ii) is set to ignore syllable tags;

— and the master PMU data match enable bit (cfgdtagx.en) in this register must
be set;

— HOWEVER, if all four cfgdtagx.en bits are zero (which would normally disable
all PMU tagging), all enabling and matching logic is disabled, and every single
operation will match.
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3.3.8

3.3.9

112

e D-EAR matches:

— All enabling and matching is identical to that described above for PMU matches,
including all of the cfgdtag[x].en qualification; plus

— the operation must also meet the additional qualifications specified in
Section 3.3.11, “Data Cache EAR” for the specific type of data events that are
desired to be captured by the D-EAR.

Data Reference Type Matching (PMC_DAM_CFG)

For instructions that reference memory, the processor allows event counting to be
constrained by data reference type. The following is a list of primary data reference

types:
= LOAD_INT: integer loads (see DATA_REF.LOAD_INT)
= LOAD_FP: floating point loads (see DATA_REF.LOAD_FP)
» LOAD_RSE: RSE loads (see DATA_REF.LOAD_RSE)
e LOAD_HPW: hardware page walker loads (see DATA_REF.LOAD_HPW)
= STORE_INT: integer stores (see DATA_REF.STORE_INT)
» STORE_FP: floating point stores (see DATA_REF.STORE_FP)
e STORE_RSE: RSE stores (see DATA_REF.STORE_RSE)
= SEMAPHORE: semaphores (see DATA_REF.SEMAPHORE)
= LFETCH: software prefetches (see DATA_REF.LFETCH)
= HW_PREF: hardware prefetches (see DATA_REF.HW_PREF and
RIL_REQ_REF_DATA.WB_MLD_BUDDY)

The primary data reference types (see Section 4.2.7.1, “Primary Data Reference
Types™) are more widely supported by a variety of PMU events than the following data
reference types are:

« Cache flushes (fc)

= TLB purges (ptc, ptr)

« Data TLB transfers

= Other Data TLB ops (thash, ttag, tak, tpa, probe)
= Snoops

The data references types to be matched are encoded in PMC_DAM_CFG.typemask as
shown in Table 3-14.

The data reference type match operates independently of, but can be combined with
other types of PMU event counting constraints. See Section 4.2.7.2, “Asynchronous
Data References and Event Matching Constraints” for important information regarding
data reference type matching and data reference events.

Event Address Registers

This section defines the register layout for the processor instruction cache and data
cache event address registers (EARs). Sampling of the following events is supported on
the processor:

e Instruction demand fetch misses

e Instruction TLB misses

Intel® Itanium® Processor 9500 Series
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 Data cache accesses
e Data TLB accesses

= ALAT operations

The EARs are configured through two PMC registers (PMC_DEAR_CFG and
PMC_IEAR_CFG). The EAR unit masks allow software to specify event collection latency
thresholds to hardware. Instruction and data addresses, operation latencies, request
and response type and other captured event parameters are provided in five PMD
registers (PMD_IEAR_STAT, PMD_IEAR_IADDR, PMD_DEAR_STAT, PMD_DEAR_IADDR,
PMD_DEAR_DADDR). The instruction and data cache EARs report the latency of
captured cache events and allow latency thresholding to qualify event capture. Event
address data registers contain consistent data only when event collection is frozen
(PMCq.fr is one). Reads of EAR PMDs while event collection is enabled return undefined
values.

3.3.10 Instruction Cache EAR

The instruction event address configuration register (PMC_IEAR_CFG) can be
programmed to monitor either L1 instruction cache or instruction TLB miss events.
Figure 3-19 and Table 3-15 detail the register layout of PMC_IEAR_CFG. Table 3-21
describes the associated event address data registers PMD_IEAR_{STAT,IADDR}.

Figure 3-19. Instruction Event Address Configuration Register (PMC_IEAR_CFG)

63 34 33 19 16 9 8 7 6 5 4 3 0
ig vm ig umask ig mode | ig rFr)1 ig plm
2 4 2 4
Table 3-15. Instruction Event Address Configuration Register Fields (PMC_IEAR_CFG)
Field Bits Description
vm 34:33 See Table 3-6
umask 19:16 Instruction EAR unit mask
mode 01: instruction cache unit mask (definition see Table 3-16)
mode 10: instruction TLB unit mask (definition see Table 3-17)
mode 9:8 Instruction EAR mode selector:
00:Not active
01: Instruction cache fetch misses
10: TLB accesses
pm See Table 3-6.
plm 3:0 See Table 3-6.

Table 3-16. PMC_IEAR_CFG.Umask Field in Instruction Cache Mode (Sheet 1 of 2)

Umask Latency Threshold Umask Latency Threshold
Bits 19:16 [CPU cycles] Bits 19:16 [CPU cycles]
0000 (Any latency) 1000 > 384
0001 > 16 1001 >512
0010 224 1010 > 1024
0011 >32 1011 > 1536
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Table 3-16. PMC_IEAR_CFG.Umask Field in Instruction Cache Mode (Sheet 2 of 2)

Umask Latency Threshold Umask Latency Threshold
Bits 19:16 [CPU cycles] Bits 19:16 [CPU cycles]
0100 > 64 1100 > 2048
0101 > 96 1101 > 3072
0110 >128 1110 > 4096
0111 > 256 1111 >5120

Table 3-17. PMC_IEAR_CFG.Umask Field in Instruction TLB Mode

DTLB Miss Type PMC.umask[19:16] Description
None x000 Disabled; nothing will be counted
All x111 All — any combination valid
FL TLB miss xxx1 L1 ITLB misses
ML TLB miss Xx1x L2 ITLB misses
HPW miss Xx1xx HPW misses

When the PMC_IEAR_CFG.mode is set to 01, instruction cache accesses are monitored.
When it is set to 10, instruction TLB misses are monitored. The interpretation of the
umask field depend on the setting of this field and is described in Table 3-16 and
Table 3-17 respectively. The interpretation of the performance monitor data registers
PMD_IEAR_STAT and PMD_IEAR_IADDR is described in Table 3-18 below and the field
validity in the different modes in Table 3-19.

When PMC_IEAR_CFG.mode is '01, the instruction event address register captures
instruction addresses, access latency, RAB status and responder type for instruction
demand fetch misses. Only accesses whose latency meets or exceed the threshold in
PMC_IEAR_CFG.umask will be captured.

Figure 3-20. Instruction Cache EAR Data Registers Format

63 24 23 19 18 6 15 13 12 0
ig (PMD_IEAR_STAT) rh resp tstat stat | ig | ov latency
5 3 13
63 5 0
Instruction Cache Line Address (PMD_IEAR_IADDR) ig
60
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Table 3-18. Instruction Cache EAR Data Registers Field Descriptions

Register Fields Bit Range Description
PMD_IEAR_STAT rh 24 RAB hit — when set, this field indicates the access hit in the RAB. See for more

on the RAB.

resp 23:19 Responder Type:
0x00: Off core — no information due to “no information”
0x02: MLI hit
0x10: Off core — signaled no information
0x11: non-DRAM socket local system address
0x12: non-DRAM socket remote system address
0x13: non DRAM system address — no details
0x14: LLC hit, minimum latency
0x15: LLC hit, local core snoop required, no forwarding
0x16:LLC hit, local core snoop required, core cache data forwarded
0x17: LLC hit — no details
0x18: local DRAM, no remote snoops
0x19: local DRAM, remote snoops required, no forwarding
Ox1A:local DRAM, remote snoops required, remote cache data forwarded
O0x1B: local DRAM — no further details
0x1C: remote DRAM, no additional snoops required
0x1D: remote DRAM, additional snoops required, no forwarding
Ox1E: remote DRAM, additional snoops required, remote cache data forwarded
Ox1F: remote DRAM — no further details

tstat 19:16 TLB Status:
000: no data
001: FL Instruction TLB hit
010: ML Instruction TLB hit
011: HPW hit
100: other — implied page fault

stat 15 Status:
0: No valid information in PMD_IEAR_IADDR and rest of PMD_IEAR_STAT
1: Valid information in PMD_IEAR_*
NOTE: This bit should be cleared before the EAR is reused.

overflow 13 Overflow — If 1, latency counter has overflowed one or more times before data
was returned

latency 12:0 Latency in CPU clocks

PMD_IEAR_IADDR | Instruction | 63:5 Virtual address of the cache line access
Cache Line
Address

Table 3-19. Instruction EAR Status Register Field Validity in Different Modes

Mode Resp rh tstat stat ov latency
00 (inactive) undef undef undef undef undef undef
01 (I cache load miss mode) valid valid valid valid valid valid
10 (TLB mode) undef undef valid valid undef undef

As defined in Table 3-18, the address of the instruction cache line missed the
instruction cache is provided in PMD_IEAR_IADDR. If no qualified event was captured,
it is indicated in PMD_IEAR_STAT.stat. The latency of the captured instruction cache
miss in CPU clock cycles is provided in PMD_IEAR_STAT.latency.
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When PMC_IEAR_CFG.mode is 10, the instruction event address register captures
addresses of instruction TLB misses. The unit mask allows event address collection to
capture specific subsets of instruction TLB misses. Table 3-17 summarizes the
instruction TLB umask settings. All combinations of the mask bits are supported.

3.3.11 Data Cache EAR

The data event address register can be programmed to monitor either data loads, data
stores, data TLB misses, or ALAT misses. Figure 3-21 and Table 3-20 detail the register
layout of PMC_DEAR_CFG. Figure 3-22 describes the associated event address data
registers PMD_DEAR_{STAT,IADDR,DADDRY}. The mode bits in PMC_DEAR_CFG select
data cache, data TLB, or ALAT monitoring. The interpretation of the umask field and
registers PMD_DEAR_* depends on the setting of the mode bits and is described in
Section 3.3.11.1, “Data Cache Monitoring” for data cache load monitoring,

Section 3.3.11.2, “Data TLB Monitoring” for data TLB monitoring, and Section 3.3.11.3,
“ALAT Monitoring” for ALAT monitoring.

Figure 3-21. Data Event Address Configuration Register (PMC_DEAR_CFG)

63 34 33 19 16 10 8 7 6 5 4 3 0

ig vm ig umask ig mode | ig ig plm

3o

Table 3-20. Data Event Address Configuration Register Fields (PMC_DEAR_CFG)

Field Bits Description
vm 34:33 See Table 3-6
umask 19:16 Data EAR unit mask

mode 01x: data cache unit mask (definition see Table 3-21)
mode 100: data TLB unit mask (definition see Table 3-22)
mode 11x: the field is ignored.

mode 10:8 Data EAR mode selector:
000:Not active

010: Data cache loads
011: Data cache stores
100: TLB accesses

110: ALAT misses

111: ALAT store hits

pm 6 See Table 3-6.

plm 3:0 See Table 3-6.

Table 3-21. PMC_DEAR_CFG.Umask Field in Data Cache Load Mode (010) (Sheet 1 of 2)

umask Latency Threshold umask Latency Threshold
Bits 19:16 [CPU cycles] Bits 19:16 [CPU cycles]

0000 (Any latency) 1000 > 384

0001 >4 1001 > 512

0010 >24 1010 > 1024
0011 > 32 1011 > 1536
0100 > 64 1100 > 2048
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Table 3-21. PMC_DEAR_CFG.Umask Field in Data Cache Load Mode (010) (Sheet 2 of 2)

umask Latency Threshold umask Latency Threshold
Bits 19:16 [CPU cycles] Bits 19:16 [CPU cycles]
0101 > 96 1101 > 3072
0110 >128 1110 > 4096
0111 > 256 1111 > 5120

Table 3-22. PMC_DEAR_CFG.Umask Field in Data TLB Mode

TLB Access Type

PMC.umask[19:16]

Description

None 0000 Disabled; nothing will be counted

FL TLB hit xxx1 First level data TLB hits will be counted

ML TLB hit XX1x Mid level data TLB hits (with first level TLB miss) will be counted
HPW hit X1XX Hardware page walker hits (with TLB misses) will be counted
HPW miss 1XXX Hardware page walker misses will be counted

All 1111 All - any combination valid

For snoops captured in TLB mode, the umask should be set to all ones (0xF), as the

results (for the snoop-related capture) are undefined otherwise and should be ignored.

In ALAT mode (PMC_DEAR_CFG.mode=11x), the umask field is ignored.

Figure 3-22. Data Cache EAR Data Registers Format

PMD_DEAR_STAT:

63 42 2 27 24 23 19 18 6 15 13 12 0
ig hints ig req resp tstat stat | ig | ov latency
1 4 5 3 13
PMD_DEAR_DADDR
63 0
Data Address
64
PMD_DEAR_IADDR:
63 4 3 2 1 0
Instruction Address bn slot
60 2 2
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Table 3-23. Data Cache EAR Data Field

Core Performance Monitoring

Descriptions (Sheet 1 of 2)

Register Fields Bit Range Description
PMD_DEAR_STAT hints 42:32 DAHR Hints read out and applied to the captured operation (see the DPF
chapter for a detailed description of these hint fields as they are defined
for the processor, and a definition of their various values):
42 — BIAS
41 — NON_BLOCKING_SPEC_DISALLOWED
40:39 — PF_DROP
38:37 — HWPF
36 — LLC_LOCALITY
35:34 — MLD_LOCALITY
req 27:24 Requestor Type:
0x00: No information
0x01: Int load
0x02: FP load
0x03: RSE load
0x04: Int store
0x05: FP store
0x06: RSE store
0x07: Ifetch
0x08: Semaphore
0x09: fc
Ox0A: Hardware prefetch
0x0B: HPW load
0x0C: Snoop
0x0D: PTC or PTR
OxOE: DTB TLB transfer
OxOF: misc DTB op (thash, ttag, tak, tpa, probe)
Note: Table 3-25 below indicates which requestor types are valid in
whichmode.
resp 23:19 Responder Type:
0x00: Deferral: DTB miss/DTB NaT, latency up to HPW
0x01: FLD hit, implied FLD TLB hit
0x02: MLD hit, implied MLD TLB hit
0x04: SMQ hit, implied MLD TLB hit
0x08: Deferral: MLD NaT, FLD address NaT
0x10: Off core — no information
0x11: non-DRAM socket local system address
0x12: non-DRAM socket remote system address
0x13: non DRAM system address — no details
0x14: LLC hit, minimum latency
0x15: LLC hit, local core snoop required, no forwarding
0x16:LLC hit, local core snoop required, core cache data forwarded
0x17: LLC hit — no details
0x18: local DRAM, no remote snoops
0x19: local DRAM, remote snoops required, no forwarding
Ox1A:local DRAM, remote snoops required, remote cache data forwarded
0x1B: local DRAM — no further details
0x1C: remote DRAM, no additional snoops required
0x1D: remote DRAM, additional snoops required, no forwarding
Ox1E: remote DRAM, additional snoops required, remote cache data
forwarded
Ox1F: remote DRAM — no further data
tstat 19:16 TLB Status:

000: No information

001: FL Data TLB hit

010: ML Data TLB hit

011: HPW hit

100: other — implied page fault
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Descriptions (Sheet 2 of 2)

Register Fields Bit Range Description

stat 15 Status:
0: No valid information in PMD_DEAR_*ADDR and rest of
PMD_DEAR_STAT
1: Valid information in PMD_DEAR_STAT, PMD_DEAR_DADDR and in
PMD_DEAR_IADDR as indicated by slot field.
NOTE: This bits should be cleared before the EAR is reused.

overflow 13 Overflow — If 1, latency counter has overflowed one or more times
before data was returned

latency 12:0 Latency in CPU clocks.

PMD_DEAR_DADDR Data 63:0 64-bit virtual address of data item that caused miss.
Address Exception: for snoops, this is the physical address.
PMD_DEAR_IADDR Instruction 63:4 Virtual address of the first bundle in the dispersal window which was

Address being executed at the time of the miss. If ".bn" is n, then n * 16 should
be added to the address to arrive at the correct bundle address.
Exception: for snoops, an address is recorded, it is however invalid.

bn 3:2 Bundle field, indicates which of the executed bundles is associated with
the captured miss

slot 1:0 Slot field; if # 3,indicates the Instruction bundle slot of memory
instruction. A value of 3 indicates the captured address is not valid.

Table 3-24. PMD_DEAR_STAT Field validity in different modes

Mode hints req resp tstat stat ov latency
000 (inactive) undef undef undef undef undef undef undef
010 (D cache load valid valid valid valid valid valid valid
mode)
011 (D cache store valid valid =0x00 valid valid undef undef
mode) or 0x01
100 (TLB mode) valid valid undef valid valid undef undef
110 (ALAT miss) valid valid undef undef valid undef undef
111 (ALAT st hit) valid valid undef undef valid undef undef

Table 3-25. Valid PMD_DEAR_STAT.req values (Sheet 1 of 2)
Request type D cache load D cache store Data TLB ALAT miss ALAT hit

int load valid valid Idc that misses
fp load valid valid Idc that misses valid
RSE load valid valid valid
HPW load valid
int store valid valid valid
fp store valid valid valid
RSE store valid valid
Ifetch valid
semaphore valid valid valid valid
HW prefetch valid
snoop valid
fc

Intel® Itanium® Processor 9500 Series
Reference Manual for Software Development and Optimization Guide

119




intel.

Core Performance Monitoring

Table 3-25. Valid PMD_DEAR_STAT.req values (Sheet 2 of 2)

3.3.11.1

3.3.11.2

3.3.11.3
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Request type D cache load D cache store Data TLB ALAT miss ALAT hit
ptc valid
DTB TLB transfer valid
misc DTB ops valid

Data Cache Monitoring

If the Data EAR is configured to monitor the data cache, the umask is used as a load
latency threshold as defined by Table 3-21.

As defined in Table 3-22, the instruction and data addresses as well as the load latency
of a captured data cache events as well as the responder type for load accesses are
presented to software in three registers PMD_DEAR_{STAT,DADDR,IADDR}. In addition
the TLB status associated with the data access is reported. Note that in Data Cache
Monitoring mode, the TLB umask is implicitly ‘1111 (Refer to Table 3-22). If no
qualified event was captured, the valid bit in PMD_DEAR_STAT is zero.

Only the types of operations enabled in PMC_DAM_CFG.typemask will be sampled.
Other types of instructions (such as setf and reads from ccv) cannot be monitored,
even though the memory subsystem may be involved in their execution.

The detection of data cache load misses requires a load instruction to be tracked during
multiple clock cycles from instruction issue to cache miss occurrence. Since multiple
loads may be outstanding at any point in time and the processor data cache miss event
address register can only track a single event at a time, not all data cache load misses
may be captured. When the processor hardware captures the address of a load (called
the monitored load), it ignores all other overlapped concurrent loads for at least 8
cycles, or until the status of the monitored load is determined (whichever comes later).
If the monitored load turns out to be a something that is eligible to be captured, its
parameters are then latched into PMD_DEAR_*. The processor randomizes the choice
of which load instructions are tracked to prevent the same data cache load miss from
always being captured (in a regular sequence of overlapped data cache load misses).
This mechanism will sub-sample data cache events by a factor of 8 to remove capture
bias in loops, making its accuracy sufficient to be used by statistical sampling or code
instrumentation.

Data TLB Monitoring

If the Data EAR is configured to monitor data TLB accesses, the umask defined in
Table 3-22 determines which data TLB misses are captured by the Data EAR. For TLB
monitoring, all combinations of the mask bits are supported.

ALAT Monitoring

The Data EAR provides two ALAT-related modes:

= ALAT miss mode
This mode captures Id.c and chk.a instructions that miss the ALAT, indicating an
instance of unsuccessful speculation.

= ALAT store hit mode
This mode captures store operations that hit the ALAT and clear an entry.

Store operations do not include snoops, but do include xchg, semaphore and
fetchadd operations.
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Additionally, this mode only captures ALAT invalidations for the currently active
back-end thread. While a store may invalidate an ALAT entry for the inactive
thread, these invalidations will not be captured.

3.3.12 Execution Trace Buffer

The execution trace buffer provides information about the most recent Itanium control
flow changes. The execution trace buffer configuration register (PMC_ETB_CFG) defines
the conditions under which instructions which cause the changes to the execution flow
are captured, and allows the trace buffer to capture specific subsets of these events.

In addition to the branches, the processor's ETB captures rfis, exceptions (excluding
asynchronous interrupts) and and silently resteered (non-faulting failing) chk events.
Passing chk instructions are not captured under any programming conditions (except
when there is another capturable event).

In every cycle in which a qualified change to the execution flow happens, its source
bundle address and slot number are written to the execution trace buffer. This event's
target address is written to the next buffer location. If the target instruction bundle
itself contains a qualified execution flow change, the execution trace buffer records that
target instruction as a branch source instead. As a result, the branch trace buffer may
contain multiple source address entries in sequence, which implies that the second
(and subsequent) source entry implies a target entry with same bundle group address
as the source.

The setting of PMC_IPEAR_CFG can override the setting of PMC_ETB_CFG.
PMC_IPEAR_CFG is used to configure the Execution Trace Buffer's alternate modes: the
IP-EAR. Please refer to the IP_EAR mode Section 3.3.12.2 for more information about
this mode. PMC_IPEAR_CFG.mode must be set to O to enable normal execution trace
capture in PMD_ETBg_53 and PMD_ETBEXTy_,3 as described below. If
PMC_IPEAR_CFG.mode is set to values other than 0, PMC_ETB_CFG's contents will be
ignored.

= The Execution Trace Buffer fails to record the target address of an rfi. The buffer
will show back-to-back branch entries instead of the usual branch-target-branch-
target sequences. Historically back-to-back branch entries implies the target of the
first branch entry is syllable O of the address of the issue group indicated by the
2nd branch entry. Failing to record the target of the rfi results in analysis tools
assuming the rfi's target is at the address of the issue group of the next taken
branch.

It can only occur if the rfi is in an MBB or BBB bundle. There needs to be a WB2
replay in the rfi issue group (and squashed nops don't replay). So if there is a stop
bit prior to the MBB or BBB bundle, and if the M or Bs are just nops, then there
won't be an issue.

= When an external interrupt occurs in the shadow of a replay (where there are
unexecuted IP's in the pipeline) the Execution Trace Buffer records one of the
unexecuted IP's in the pipeline as the source IP of the interruption. In the normal
(non-replay) case, the source IP of an interrupt event is one of the IP's of the last
retired bundle group.

3.3.12.1 Execution Trace Capture

The subsequent subsections describe the operation of the Execution Trace Buffer when
configured to capture an execution trace (or "enhanced" branch trace).
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PMC_ETB_CFG defines the conditions under which execution flow changes are to be
captured. These conditions are given in Figure 3-23 and Table 3-26, which refer to
conditions associated with branch prediction and execution. These conditions are:

= Whether the target of the branch should be captured

= The path of the branch (not taken/taken), and

= Whether or not the branch path was mispredicted

= Whether or not the target of the branch was mispredicted

= What type of branch should be captured
All instructions eligible for capture are subject to filtering by the "plm" and "vm" fields
but only branches are affected by PMC_ETB_CFG's other filters (tm, ptm, ppm, brt, rtg
and cir) as well as the Instruction Addr Range and Opcode Match filters. The chk, rfi,

and interruption, when selected, always log both source and target IP. To not log
branches set one of the fields ppm, ptm, or tm to zero.

Figure 3-23. Execution Trace Buffer Configuration Register fields

63

34 33 21 19 18 17 16 14 13 12 11 10 9 8

o
w
o

plm

3o
a

ig vm ig cir rtg brt ppm | ptm | tm | ig

i
IN

2 3 2 3 2 2 2

Table 3-26. Execution Trace Buffer Configuration Register field description (Sheet 1 of 2)

Field

Bits Description

vm

34:33 VM mask

cir

21:19 Exception mask

1xx: capture chk instructions
X1x: capture interrupts

xx1: capture rfi instructions

rtg

18:17 Record Target

11: log target for all taken branches

10: log target for ip-relative branches only
01: log target for indirect taken branches only
00: do not log target

brt

16:14 Branch Type Mask:

111: all indirect branches captured

110: only calls and return branches will be captured

101: only IP-relative loopy branches will be captured (cloop, ctop, cexit, wtop, wexit)
011: only non-return indirect branches captured

010: only return branches will be captured

001: only IP-relative branches will be captured

000: all branches are captured

ppm

13:12 Predicted Predicate Mask:

11: capture branch regardless of predicate prediction outcome
10: branch predicted branch path (taken/not taken) correctly
01: branch mispredicted branch path (taken/not taken)

00: No branch is captured

ptm

11:10 Predicted Target Address Mask:

11: capture branch regardless of target prediction outcome
10: branch target address predicted correctly

01: branch target address mispredicted

00: No branch is captured
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Table 3-26. Execution Trace Buffer Configuration Register field description (Sheet 2 of 2)
Field Bits Description
tm 9:8 Taken Mask:
11: all branches
10: Taken branches only
01: Not Taken branches only
00: No branch is captured
pm 6 See Table 3-6.
Note: This bit is applied at the time the event's source address is captured. Once the source IP is
captured, the target IP of this event is always captured even if the ETB is disabled.
plm 3:0 See Table 3-6.
Note: This mask is applied at the time the event's source address is captured. Once the source IP is
captured, the target IP of this event is always captured even if the ETB is disabled.
To capture all correctly predicted branches, the branch trace buffer configuration
settings in PMC_ETB_CFG should be: tm=11, ptm=10, ppm=10, brt=000, rtg=11,
cir=000
Either branches whose path was mispredicted can be captured (tm=11, ptm=11,
ppm=01, brt=000) or branches with a target misprediction (tm=11, ptm=01, ppm=11,
brt=000) can be captured but not both. A setting of tm=11, ptm=01, ppm=01,
brt=000 will result in an empty buffer. If a branch's path is mispredicted, no target
prediction is recorded.
Instruction Address Range Matching (Section 3.3.5) and Opcode Matching
(Section 3.3.6) may also be used to constrain what is captured in the Branch Trace
Buffer.
These twenty-four execution trace buffer registers PMD_ETBg_,3 and their extension
PMD_ETBEXTg_»3 provide information about the outcome of a captured event
sequence. Every ETB capture records 80 bits of data, which is accessible across a pair
of PMDs, PMD_ETB; and PMD_ETBEXT;.
Figure 3-24. Execution Trace Buffer Entry Format
PMD_ETB
63 4 3 2 1 O
Address bn sl
60 2 2
PMD_ETBEXT;
63 15 14 12 11 0
ig tid stat timestamp
3 12
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Table 3-27. Execution Trace Buffer Entry Fields

Field

Bit Range

Description

Address

63:4

60-bit bundle address of bundle O of the issue group of the branch instruction or branch target

bn

1:0

Bundle of the taken event

slot

3:2

Slot index of taken event in bundle
00: Slot O source/target

01: Slot 1 source/target

10: Slot 2 source/target

11: this was a not taken event

tid

15 (79)

Thread ID - will always have the same value for a given thread.

stat

14:12
(78:76)

ETB entry status:
'000: the content of the entry is invalid

'010: the content of the entry is a target address

’100: the content of the entry is an rfi source

’110: the content of the entry is an exception source

'xx1: the content of the entry is a branch source

Note that a "11" in the slot field indicates that no taken branch was within that bundle.
’001: branch, correctly predicted

’011: branch mispredicted

’111: branch mispredicted due to target or path misprediction (implied BRU flush)

timestamp

11:0 Timestamp — value of the free-running core-clock timestamp-counter
(75:64)

Note:

The branch trace buffer registers contain valid data only when event collection is frozen
(PMCq.fr is one). While event collection is enabled, reads of PMD_ETB™* return
undefined values. The registers follow the layout defined in Figure 3-24, and Table 3-27
contain the address of either a captured branch instruction or a branch target. For
branch instructions, the stat field contains more information about branch
mispredictions. An execution trace register with a zero stat field indicates an invalid
buffer entry. SW needs to initialize these field. The processor never writes O to stat. The
slot field captures the slot number of the first taken Itanium branch instruction in the
captured instruction bundle. A slot number of 3 indicates a not-taken branch.

In every cycle in which a qualified Itanium branch retires?, its source bundle address
and bundle and slot number are written to the branch trace buffer. If within the next
clock, the target instruction bundle contains a branch that retires and meets the same
conditions, the address of the second branch is stored. Otherwise, either the branches'
target address or details of the branch prediction are written to the next buffer location.
As a result, the branch trace buffer may contain a mixed sequence of sources and
targets.

The ETB contains a feature of tracking exceptions, controlled by the PMC_ETB_CFG.cir
field. It will record exceptions and their targets. For exception targets, the slot field in
the buffer shall be ignored regardless of value.

The following behaviors of the processor ETB need to be taken into account when
reconstructing an execution flow:

= If a branch is immediately followed by a control flow change at the target (branch
or exception), another source entry will be recorded with the target’s IP rather than
a source/target pair.

1. 1n some cases, the processor execution trace buffer will capture the source (but not the target)
address of an excepting branch instruction. This occurs on trapping branch instructions as well as
faulting br.ia, break.b and multi-way branches.
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A branch taking a trap will be recorded as a branch with as its target the trap
handler IP. The subsequent rfi will then point to the branch’s original target.

= A correctly predicted branch which takes an exception may create extraneous
(identical) exception source records.

= Exception target addresses may record an incorrect slot field. Exception targets will
always have a slot of O and the recorded value can be discarded.

« Exceptions due to an external interrupt may record an incorrect source IP which
should be ignored. The subsequent rfi will then point to the correct interrupted
instruction.

= A branch target record may be misrecorded as an exception source. These can be
identified and eliminated as follows: Any exception source record follows a branch
source that isn’t followed by a target record is spurious and should be changed to a
target record.

« RFIs may fail to record their target in certain cases where the rfi is in an MBB or
BBB template bundle. Similarly, synthesized RFIs will not be captured.

The branch trace buffer is a circular buffer containing the last twelve to twenty-four
qualified Itanium branches. The Branch Trace Buffer Index Register
(PMD_ETB_BUFIDX) defined in Figure 3-25 and Table 3-28 identify the most recently
recorded branch or target. In every cycle in which a qualified branch or target is
recorded, the execution buffer index (ebi) is post-incremented. After 24 entries have
been recorded, the branch index wraps around, and the next qualified branch will
overwrite the first trace buffer entry. The wrap condition itself is recorded in
PMD_ETB_BUFIDX.f. The ebi field of PMD_ETB_BUFIDX.ebi defines the next branch
buffer index that is about to be written. The following equation computes the last
written branch trace buffer PMD index from PMD_ETB_BUFIDX:

last-written-PMD-index = (PMC_ETB BUFIDX.ebi - 1) % 24

If both the full bit and the ebi field of PMD_ETB_BUFIDX are zero, no qualified branch
has been captured by the branch trace buffer. The full bit gets set every time the
branch trace buffer wraps. Once set, the full bit remains set until explicitly cleared by
software, i.e. it is a sticky bit. Software can reset the ebi index and the full bit by
writing to PMD_ETB_BUFIDX.

Figure 3-25. Execution Trace Buffer Index Register Format

ig f | ig ebi

Intel® Itanium® Processor 9500 Series 125
Reference Manual for Software Development and Optimization Guide



intel.

Core Performance Monitoring

Table 3-28. Execution Trace Buffer Index Register Fields
Field Bit Range Description
full Full Bit (sticky)
if full=1: branch trace buffer has wrapped
if full=0: branch trace buffer has not wrapped
ebi 4:0 Execution Buffer Index [Range 0..23 — Index O indicates PMDgy4]
Pointer to the next execution trace buffer entry to be written
if full=1: points to the oldest recorded branch/target
if full=0: points to the next location to be written
Notes on the Execution Trace Buffer
Although the processor ETB does not capture asynchronous interrupts as events, the
address of these handlers can be captured as target addresses. This could happen if, at
the target of a captured event (for example, taken branch), an asynchronous event is
taken before executing any instruction at the target.
3.3.12.2 IP Event Address Capture (IP-EAR)
The processor has a feature called Instruction Pointer Event Address Capture (or IP-
EAR). This feature is intended to facilitate the correlation of performance monitoring
events to IP values. To do this, the processor's Execution Trace buffer (ETB) can be
configured to capture IPs of retired instructions. When a performance monitoring event
is used to trigger an IP-EAR freeze, if the IP which caused the event gets to retirement
there is a good chance that IP would be captured in the ETB. The IP-EAR freezes after a
programmable number of cycles following a PMU freeze as described below, in order to
allow IPs for early pipe events to proceed to retirement.
PMC_IPEAR_CFG is used to configure this feature and the ETB registers (PMD_ETB¥*)
are used to capture the data. PMD_ETB_BUFIDX holds the index and overflow bits for
the IP Buffer much as it does for the ETB.
Setting PMC_IPEAR_CFG.mode to 4 will override the setting of PMC_ETB_CFG (the
configuration register for the normal ETB mode).
Figure 3-26. IP-EAR Configuration Register
63 34 33 18 11 10 8 6 3 0
‘ ig ‘ vm ‘ ig delay ‘ mode ‘ ig ‘ rrr)1 ‘ ig ‘ plm ‘
2 8 3 4
Table 3-29. IP-EAR Configuration Register Field Description
Field Bits Description
vm 34:33 See Table 3-6.
delay 18:11 Programmable delay before freezing
mode 10:8 IP EAR mode:
000: ETB Mode (IP-EAR not functional; ETB is functional)
100: IP-EAR Mode (IP-EAR functional; ETB not functional)
pm 6 See Table 3-6.
plm 3:0 See Table 3-6.
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The IP_EAR functions by continuously capturing retired IPs in PMD_ETB*q_»3 as long as
it is enabled. It captures retired IPs and elapsed time between retirements. Up to 24
entries can be captured.

The IP-EAR has a different freezing model than the rest of the Performance Monitors. It
is capable of delaying its freeze for a number of cycles past the point of PMU freeze.
The user can program an 8-bit number to determine the number of cycles the freeze
will be delayed.

Figure 3-27 represent the layout of an execution trace buffer entry in IP-EAR mode
across the PMD_ETB and PMD_ETBEXT register pairs.

Figure 3-27. IP-EAR Entry Format

63 7 0
Address Delay(ef=1)
PMD_ETB [0-23] 60 8
63 5 14 13 12 0
ig tid | f | ef cycles
PMD_ETBEXT_[0-23] 8 13

Table 3-30. IP-EAR Entry Fields
Field Bits Description
Address 63:0 Retired IP — bits 63:0 — bits 3:2 indicate the bundle, bits 1:0 the instruction slot
delay 7:0 Aborted delay count — if .ef is set, indicates the remainder of the aborted delay count,
otherwise contains the rest of the retired IP value
tid 15 (79) Thread ID - will always have the same value for a given thread.
f 14 (78) Flush — Indicates whether there has been a pipe flush since the last entry
ef 13 (77) Early freeze — When set, indicates the current entry is an early freeze case, due to one of the
following: a change in PSR bits caused the IP-EAR to become disabled or a thread switch
occurred
cycles 12:0 (76:64) Elapsed cycle count from the previous retired IP. This is a saturating counter and will stay at
all 1s when counted up to the maximum value.
Figure 3-28. IP Trace Buffer Index Register Format (PMD_ETB_BUFIDX)
63 6 4 0
ig f | ig ebi
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Table 3-31. IP Trace Buffer Index Register Fields Description
Field Bit Range Description
full 6 Full Bit (sticky)
if full=1: IP trace buffer has wrapped
if full=0: IP trace buffer has not wrapped
ebi 4:0 IP Trace Buffer Index [Range 0.. 23 — Index O indicates PMDg4]
Pointer to the next IP trace buffer entry to be written
if full=1: points to the oldest recorded IP entry
if full=0: points to the next location to be written
Notes on the IP-EAR
When the IP-EAR freezes due to its normal freeze mechanism (that is, PMU freeze +
delay), it captures one last entry with "ef'=0. The IP value in this entry could be
incorrect since it is not assured that the CPU would be retiring an IP at this particular
time. Since this is always the youngest entry captured in IP_EAR buffer, it should be
easier to identify this event.
3.3.12.3 IP-EAR User Guide
The following section contains a user guide to programming the IP-EAR and
interpreting the captured results.
1. Chose a core PMU event to guide the IP-EAR. Note that only events which have the
IP-EAR parameter entry can be used with the IP-EAR.
For each event we need the following two values:
a. L: the event count latency. This is the time from the event occurrence to when
it increments the PMD counter.
b. P: the event pipeline latency. This is the number of pipeline stages from the
event occurrence to when the associated IP retirement gets recorded in the ETB.
2. Program a PMC/PMD counter pair to record this event. The PMD is pre-loaded with
the desired sample count (maximum possible count +1 - sample count). Typically,
the PMC is configured to interrupt on overflow.
3. The IP-EAR (PMC_IPEAR_CFG) is programmed as follows:
a. PMC_IPEAR_CFG.{pm, plm, vm} are configured as desired
b. PMC_IPEAR_CFG.mode is set to 'b100 to set IP-EAR mode
c. PMC_IPEAR_CFG.delay, called D below, is set according to the estimated core
cycles it takes the instructions associated with the event to retire (there will be
some trial and error here).
4. The PMU is then run on the workload of choice. It will overflow and cause an
interrupt.
5. The ETB data is collected and analyzed off-line:
a. Reorder the buffer in ascending chronological order (PMC_ETB_BUFIDX points
to the oldest entry).
b. Starting at the newest record (chronologically), walk back and forward to locate
the IP that is associated with the event:
« Walk the buffer backwards through time until the sum of the timestamp
fields in the ETB entries >= L+D
« Next walk the buffer forward P entries. This entry should have the IP
associated with the event
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3.3.13

c. If during the walk back we go past the beginning of the buffer, then the delay
value D is too large.

d. If during the walk forward we go past the end of the buffer, the delay value D is
too small.

Thread-State Event Configuration

The processor allows PMU users to count background thread state cycles
(MT_BE_BGND_CYCLES_IN_STATE.*). To allow capture of thread state combinations
with a limited number of events, PMC_BEMT_CTL allows to select which FG/BG thread
state combinations are captured.

The respective MT_BE_BGND_CYC_IN_STATE event will only fire when the foreground
thread is in the thread state(s) indicated by PMC_BEMT_CTL.

Figure 3-29. Thread State Event Control Register Format

i FGSt FGPri

Table 3-32. Thread State Event Control Register Field Description

Field

Bit Range Description

FGSt

5:3 Exec-state selects for foreground thread

5: signal background thread state when foreground thread is unstalled
4: signal background thread state when foreground thread is blocked
3: signal background thread state when foreground thread is stalled

FGPri

2:0 Priority selects for foreground thread

2: signal background thread state when foreground thread is high priority

1: signal background thread state when foreground thread is nominal priority
0: signal background thread state when foreground thread is low priority

3.3.14

Interrupt Counting

The processor allows PMU users to count IVA based interrupts based on the IVA offset.
The interrupts to be counted are programmed by programming the register
PMC_IVAEV_CFG. which supports an 11bit IVA offset and 11bit mask to select the
interrupt. In addition there is a unmasked version of this event.

The IVA_mask and IVA_offs apply to address bits [14:4].

Figure 3-30. Interrupt Counting Event Configuration Register Format

21 11 10 0

ig IVA_mask IVA_offs

11 11
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Table 3-33.

Interrupt Counting Event Configuration Register Field Description

Field

Bit Range Description

IVA_mask

21:11 Mask for IVA offset bits [14:4] programmed into IVA_offs field

If 1: The corresponding bit in IVA_offs is already considered as matched

if 0: The bit corresponding bit in the IVA_offs needs to match the real offset to increment the event
INTERRUPT_EVENT.

IVA_offs

10:0 IVA offset; In order for the event INTERRUPT_EVENT to increment it is necessary to match the IVA

offset bits [14:4] of the interrupt to the value defined by IVA_offs and IVA_mask defined in this
register.

3.3.15

130

PerfMon Interrupts

Each one of registers PMD,4_;9 will cause an interrupt if the following conditions are all
true:

= PMC;.0i=1 (that is, overflow interrupt is enabled for PMD;) and PMD; overflows.
Note that there is only one interrupt line that will be raised regardless of which
PMC/PMD set meets this condition.

This interrupt is an "External Interrupt” with Vector= 0x3000 and will be recognized
only if the following conditions are true:

= PMV.m=0 and PMV.vector is set up correctly; i.e. Performance Monitor interrupts
are not masked and a proper vector is programmed for this interrupt by executing
a"mov cr73=r2".

e PSR.i =1 and PSR.ic=1; i.e. interruptions are unmasked and interruption collection
is enabled in the Processor Status Register by executing either the "ssm imm" or
"mov psr.i=r2" instruction.

TPR.mmi=0 (i.e. all external interrupts are not masked) and TPR.mic is a value that
the priority class that Performance Monitor Interrupt belongs to are not masked.
For example, if we assign vector OxD2 to the Performance Monitor Interrupt,
according to Table 5—7 "Interrupt Priorities, Enabling, and Masking" in Volume 2 of
the Intel® Itanium® Architecture Software Developer’'s Manual, it will be priority
class 13. So any value less than 13 for TPR.mic is okay for recognizing this
interrupt. A "mov créee=r1" will write to this register.

= There are no higher priority faults, traps, or external interrupts pending.

The interrupt service routine needs to read IVR register "mov rl=cré65" in order to
figure out the highest priority external interrupt which needs to be serviced.

Before returning from the interrupt service routine, the Performance Monitor needs to
be initialized such that the interrupt will be cleared. This could be done by clearing the
PMC.oi and/or re-initializing the PMD which caused the interrupt (you will know this by
reading PMCg). In addition to this, all bits of PMCq need to be cleared if further
monitoring needs to be done.
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A

Core Performance Monitor
Events

4.1 Introduction
This section enumerates and describes the performance monitoring events available on
the Intel® Itanium® processor 9500 series core.
4.1.1 Categorization of Events
Performance related events are grouped into the following categories:
= Basic Events: clock cycles, retired instructions (4.2.1)
= Instruction Dispersal Events: instruction decode and issue (4.2.2)
= Instruction Execution Events: instruction execution, data and control speculation,
and memory operations (4.2.3)
« Cycle accounting: stall and replay cycle break-down for both front- and back-end
(4.2.4, 4.2.5)
= Branch Events: branch prediction (4.2.6)
< Memory Hierarchy: instruction and data caches (4.2.8, 4.2.9, 4.2.12, 4.2.13)
= TLB Events: instruction and data TLBs (4.2.10, 4.2.11, 4.2.14, 4.2.15)
= Data Prefetch Events (4.2.16)
« RIL Events: Off-core request and responses (4.2.17)
* LLC Events: Last-level cache events (4.2.19)
= RSE Events: Register Stack Engine (4.2.18)
= System Events: operating system monitors (4.2.20)
= Multi-Threading Events (4.2.21)
4.1.2 Multi-Threading and Event Types
The processor implements a type of hardware based multithreading that effectively
allows two threads to coexist within a processor core although only one thread is
"active" within the core’s front and back-end pipeline respectively at any moment in
time. This affects how events are generated. Certain events may occur while the thread
they belong to is inactive. This also affects how events are assigned to the threads
occupying the same core. Certain events do not have the concept of a "home™ thread.
To help decipher these effects, events have been classified by the following types:
« Active - This event can only occur when the thread that generated it is "active"
(currently executing in the processor core’s pipeline) and is considered to be
generated by the active thread. Example(s): 1A64_INST_RETIRED.
= Causal - This event does not belong to a thread. It is assigned to the active thread.
Example(s): CPU_OP_CYCLES.
« Floating - This event belongs to a thread, but could have been generated when its
thread was inactive (or "in the background™). Example(s): MLD_REFERENCES.
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If a monitor's PMC[i].all is not set, only events associated with the monitoring thread
will be captured. If a monitor's PMC[i].all is set, events associated with both threads
will be captured.

Performance Event Associativity

The processor supports a large number of performance events that are collected in a
decentralized manner. Many constraints posed by previous Intel Itanium generations
were eliminated. In turn the processor poses some restriction in terms of counter
associativity.

Each events counter affinity is indicated by the counter affinity field in the event
description table. The field is a hexadecimal number, where a set bit i indicates that
PMC/PMD pair i can count the event. For example, a value of 0x05550 means PMDq 4,
12, 10, 8, 6 and 4 €an count this particular event.

The associativity was designed to allow significant flexibility and be easy to capture
algorithmically. The counters that can be associated with (i.e. count) an event can in
most cases be derived from the event ID (in addition, some fundamental events may
support a superset of this).

case (EventID[11:10]) // PMC.es[7:6]
00 : candidate counters = PMCs 4..19
if (EventID[0] == 0) // PMC.umask[0]
possible counters = even pmcs (candidate counters)
else
possible counters = odd pmcs(candidate_ counters)
10 : candidate counters = PMCs 4..11, 16..19
if (EventID[0] == 0) // PMC.umask[0]
possible counters = even pmcs (candidate counters)
else
possible counters = odd pmcs(candidate counters)
11 :candidate _counters = PMCs 8..19
possible counters = pmcs(counter affinity)
endcase

In English: most even-numbered events are associated with even-numbered counters,
odd-numbered events are associated with odd-numbered counters, and the counters
available are affected by the top-level collection station, but some RIL collected events
have mod3 and mod4 affinity.

The exact values are indicated by the counter affinity field in the event tables.

Event Description Tables Field Definition

This section elaborates on the fields used in the PMU event tables in the following
chapter.

Description

General description of the monitor in question

Max Inc/Cyc

Maximum increment of this monitor per core clock cycle

MT Capture Type

MT capture type (see Appendix 4.1.2 for more details)

Subevents:

SUBEVENT

First subevent name (This document uses the convention: EVENT.SUBEVENT when referring to subevents)

Counter Affinity

Indicates which counters are capable of monitoring this event (see Appendix 4.1.3 for more details)
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IAR/OPC/DAR/ Filtering capability for this monitor, taking a form of "1/0/D/R":
DREF I - the event can be constrained by instruction address matching
O - the event can be constrained by op-code matching
D - the event can be constrained by data address matching
R - the event can be constrained by data reference type matching
- - the event cannot be constrained by the particular constraint type
Lower case i/o/d/r letters indicate that there may be components to an event that are not subject to a
particular type of constraint.
Definition More detailed definition of the event/subevent
Note Particular properties/issues/caveats associated with the event
4.1.5 Performance Monitor Events Ordered by Event Code
Table 4-1 presents all of the performance monitors provided in the processor ordered
by their event code. The event code is comprised of PMC.es and PMC.umask
concatenated, PMC.umask forming the lesser significant portion.
Events which include MLD sourced HW prefetching do not respect the Instruction
Address Range filter for those prefetching operations. For these events the prefetches
are always counted. MLD_REF__ ANY and LLC_REF_HIT__ANY are two of the events
affected by this.
Table 4-1. All Performance Monitors Ordered by Code (Sheet 1 of 20)

EC\(I)%T; Symbol Name Area Section
0x001 CPU_REF_CYCLES Basic 4.2.1.2
0x002 CPU_OP_CYCLES Basic 4.2.1.1
0x003 CPU_OP_CYCLES.HALTED Basic 4.2.1.1
0x004 CPU_OP_CYCLES.TAGGED Basic 4.2.1.1
0x005 RETIRED_INST_TAGGED.IAMO_OPMO Execution 4.2.3.31
0x005 IA64_INST_RETIRED Basic 4.2.1.4
0x006 RETIRED_INST_TAGGED.IAM1_OPM1 Execution 4.2.3.31
0x007 RETIRED_INST_TAGGED.IAM2_OPMO Execution 4.2.3.31
0x008 RETIRED_INST_TAGGED.IAM3_OPM1 Execution 4.2.3.31
0x009 RETIRED_PREDICATE_SQUASHED Execution 4.2.3.32
Ox00A RETIRED_INST_NOP Execution 4.2.3.25
0x00B RETIRED_INST_FP Execution 4.2.3.21
0x00C FP_FLOP Execution 4.2.3.15
0x00D RETIRED_INST_M.ANY Execution 4.2.3.24
0x00E RETIRED_INST_M.MOVTODAHR Execution 4.2.3.24
Ox00F DSPEC_CHKA_LDC.ANY Execution 4.2.3.6
0x010 DSPEC_LDC.HIT Execution 4.2.3.8
0x011 DSPEC_CHKA_LDC_FAIL.ANY Execution 4.2.3.7
0x012 DSPEC_CHKA_LDC_FAIL.INT Execution 4.2.3.7
0x013 DSPEC_CHKA_LDC_FAIL.FP Execution 4.2.3.7
0x014 CSPEC_CHKS.ANY Execution 4.2.3.3
0x015 CSPEC_CHKS_FAIL.ANY Execution 4.2.3.4
0x016 CSPEC_CHKS_FAIL.INT Execution 4.2.3.4
0x017 CSPEC_CHKS_FAIL.FP Execution 4.2.3.4
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Table 4-1. All Performance Monitors Ordered by Code (Sheet 2 of 20)

Event Symbol Name Area Section

Code
0x018 EAR_EVENT_ETB Execution 4.2.3.10
0x019 EAR_EVENT_DATA Execution 4.2.3.9
Ox01A CPU_CPL_CHANGE.ANY System 4.2.20.1
0x01B CPU_CPL_CHANGE.FROMO System 4.2.20.1
0x01C CPU_CPL_CHANGE.FROM1 System 4.2.20.1
0x01D CPU_CPL_CHANGE.FROM2 System 4.2.20.1
OxO01E CPU_CPL_CHANGE.FROM3 System 4.2.20.1
OxO01F INTERRUPT_EVENT.MASKED System 4.2.20.2
0x020 INTERRUPT_EVENT.UNMASKED System 4.2.20.2
0x021 SERIALIZATION_EVENT System 4.2.20.3
0x023 CYC_BE_NO_BUBBLE Stall 4.2.4.5
0x024 CYC_BE_BUBBLE.ANY Stall 4.2.4.1
0x025 CYC_BE_IBD_STALL.ANY Stall 4.2.4.4
0x026 CYC_BE_IBD_STALL.RSE_ANY Stall 4.2.4.4
0x027 CYC_BE_IBD_STALL.RSE_CFLE Stall 4.2.4.4
0x028 CYC_BE_IBD_STALL.RSE_ST Stall 4.2.4.4
0x029 CYC_BE_IBD_STALL.RSE_LOAD Stall 4.2.4.4
Ox02A CYC_BE_IBD_STALL.RSE_WAIT Stall 4.2.4.4
0x02B CYC_BE_IBD_STALL.THRSW Stall 4.2.4.4
0x02C CYC_BE_IBD_STALL.HPW Stall 4.2.4.4
0x02D CYC_BE_IBD_STALL.OZQFULL Stall 4.2.4.4
Ox02E CYC_BE_IBD_STALL.ACQ Stall 4.2.4.4
Ox02F CYC_BE_IBD_STALL.GR_LOAD Stall 4.2.4.4
0x030 CYC_BE_IBD_STALL.FR_LOAD Stall 4.2.4.4
0x031 CYC_BE_IBD_STALL.SRLZ Stall 4.2.4.4
0x032 CYC_BE_IBD_STALL.REL Stall 4.2.4.4
0x033 CYC_BE_IBD_STALL.MTOM Stall 4.2.4.4
0x034 CYC_BE_IBD_STALL.FTOF Stall 4.2.4.4
0x035 CYC_BE_IBD_STALL.FLD_DMND Stall 4.2.4.4
0x036 CYC_BE_IBD_STALL.WB2_TRAP Stall 4.2.4.4
0x037 CYC_BE_IBD_STALL.QFULL Stall 4.2.4.4
0x038 CYC_BE_IBD_STALL.FEBUB Stall 4.2.4.4
0x039 CYC_BE_IBD_STALL.DEBUG Stall 4.2.4.4
Ox03A CYC_BE_EXE_REPLAY.ANY Stall 4.2.4.3
0x03B CYC_BE_EXE_REPLAY.GR_LOAD_RAW Stall 4.2.4.3
0x03C | CYC_BE_EXE_REPLAY.FR_LOAD_RAW Stall 4.2.4.3
0x03D CYC_BE_EXE_REPLAY.GR_LOAD_WAW Stall 4.2.4.3
Ox03E CYC_BE_EXE_REPLAY.FR_LOAD_WAW Stall 4.2.4.3
0x03F CYC_BE_EXE_REPLAY.GR_GR Stall 4.2.4.3
0x040 CYC_BE_EXE_REPLAY.FR_FR Stall 4.2.4.3
0x041 CYC_BE_EXE_REPLAY.MT1_HIGH Stall 4.2.4.3
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Table 4-1. All Performance Monitors Ordered by Code (Sheet 3 of 20)

Ec\:)%r;t Symbol Name Area Section
0x042 CYC_BE_EXE_REPLAY.FCMP Stall 4.2.4.3
0x043 CYC_BE_EXE_REPLAY.PRED Stall 4.2.4.3
0x044 CYC_BE_EXE_REPLAY.NOTN Stall 4.2.4.3
0x045 CYC_BE_EXE_REPLAY.FPSR Stall 4.2.4.3
0x046 CYC_BE_EXE_REPLAY.SRLZ Stall 4.2.4.3
0x047 CYC_BE_EXE_REPLAY.REL Stall 4.2.4.3
0x048 CYC_BE_EXE_REPLAY.ARCR Stall 4.2.4.3
0x049 CYC_BE_EXE_REPLAY.MT1_LOW Stall 4.2.4.3
Ox04A CYC_BE_DET_REPLAY.ANY Stall 4.2.4.2
0x04B CYC_BE_DET_REPLAY.GR_LOAD Stall 4.2.4.2
0x04C CYC_BE_DET_REPLAY.DCS_HZRD Stall 4.2.4.2
0x04D CYC_BE_DET_REPLAY.STORE_VS_STORE Stall 4.2.4.2
Ox04E CYC_BE_DET_REPLAY.LOAD_AFTER_WRITE Stall 4.2.4.2
Ox04F CYC_BE_DET_REPLAY.LOAD_ACQ Stall 4.2.4.2
0x050 CYC_BE_DET_REPLAY.FLUSH_STORE Stall 4.2.4.2
0x051 CYC_BE_DET_REPLAY.HPW_HZRD Stall 4.2.4.2
0x052 CYC_BE_DET_REPLAY.WRITE_HIT_VS_FILL Stall 4.2.4.2
0x053 CYC_BE_DET_REPLAY.WRITE_MISS_VS_FILL Stall 4.2.4.2
0x054 CYC_BE_DET_REPLAY.MT1 Stall 4.2.4.2
0x055 CYC_BE_WB2_REPLAY.ANY Stall 4.2.4.7
0x056 CYC_BE_WB2_REPLAY.LDC Stall 4.2.4.7
0x057 CYC_BE_WB2_REPLAY.PAUSE Stall 4.2.4.7
0x058 CYC_BE_WB2_REPLAY.ALLOC_PEC Stall 4.2.4.7
0x059 CYC_BE_WB2_REPLAY.MOV_PSR_UM Stall 4.2.4.7
Ox05A CYC_BE_WB2_REPLAY.VIRT_INT Stall 4.2.4.7
0x05B CYC_BE_WB2_REPLAY.FP_DEN Stall 4.2.4.7
0x05C CYC_BE_WB2_REPLAY.FP_SIR Stall 4.2.4.7
0x05D CYC_BE_WB2_REPLAY.BLK_HPW Stall 4.2.4.7
OxO05E CYC_BE_WB2_REPLAY.OZQ_FULL Stall 4.2.4.7
OXO05F CYC_BE_WB2_REPLAY.STORE_ALIAS Stall 4.2.4.7
0x060 CYC_BE_WB2_REPLAY.NAT_HZRD Stall 4.2.4.7
0x061 CYC_BE_WB2_REPLAY.DAHR_HZRD Stall 4.2.4.7
0x062 CYC_BE_WB2_REPLAY.LOAD_ACQ Stall 4.2.4.7
0x063 CYC_BE_WB2_REPLAY.MT1 Stall 4.2.4.7
0x064 CYC_BE_WB2_REPLAY.SER Stall 4.2.4.7
0x065 CYC_BE_WB2_FLUSH.ANY Stall 4.2.4.6
0x066 CYC_BE_WB2_FLUSH.XPN Stall 4.2.4.6
0x067 CYC_BE_WB2_FLUSH.BRU Stall 4.2.4.6
0x068 IBL_ISSUE.ANY Dispersal 4.2.2.2
0x069 IBL_ISSUE.M_PIPE Dispersal 4.2.2.2
O0x06A IBL_ISSUE_STOP.NONE Dispersal 4.2.2.3
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Table 4-1. All Performance Monitors Ordered by Code (Sheet 4 of 20)

Event Symbol Name Area Section

Code
0x06B IBL_ISSUE_STOP.REPLAY Dispersal 4.2.2.3
0x06C IBL_ISSUE_STOP.EXPLICIT Dispersal 4.2.2.3
0x06D IBL_ISSUE_STOP.POWER Dispersal 4.2.2.3
Ox06E IBL_ISSUE_STOP.DROOP Dispersal 4.2.2.3
Ox06F IBL_ISSUE_STOP.ASYM_I Dispersal 4.2.2.3
0x070 IBL_ISSUE_STOP.ASYM_M Dispersal 4.2.2.3
0x071 IBL_ISSUE_STOP.FLD_DMND_MO Dispersal 4223
0x072 IBL_ISSUE_STOP.FLD_DMND_M1 Dispersal 4.2.2.3
0x073 IBL_ISSUE_STOP.OVRSUB_M Dispersal 4.2.2.3
0x074 IBL_ISSUE_STOP.OVRSUB_I Dispersal 4.2.2.3
0x075 IBL_ISSUE_STOP.OVRSUB_A Dispersal 4.2.2.3
0x076 IBL_ISSUE_STOP.OVRSUB_F Dispersal 4.2.2.3
ox077 IBL_ISSUE_STOP.STRUCT Dispersal 4.2.2.3
0x078 IBL_ISSUE_STOP.BUNDLE Dispersal 4.2.2.3
0x079 IBL_ISSUE_STOP.9PLUS3 Dispersal 4.2.2.3
Ox07A IBL_ISSUE_LOST_BW.ANY Dispersal 4.2.2.1
0x07B IBL_ISSUE_LOST_BW.POWER Dispersal 4.2.2.1
0x07C IBL_ISSUE_LOST_BW.DROOP Dispersal 4.2.2.1
0x07D IBL_ISSUE_LOST_BW.ASYM_I Dispersal 4221
Ox07E IBL_ISSUE_LOST_BW.ASYM_M Dispersal 4.2.2.1
Ox07F IBL_ISSUE_LOST_BW.FLD_DMND_MO Dispersal 4.2.2.1
0x080 IBL_ISSUE_LOST_BW.FLD_DMND_M1 Dispersal 4221
0x081 IBL_ISSUE_LOST_BW.OVRSUB_A Dispersal 4.2.2.1
0x082 IBL_ISSUE_LOST_BW.OVRSUB_F Dispersal 4.2.2.1
0x083 IBL_ISSUE_LOST_BW.OVRSUB_I Dispersal 4221
0x084 IBL_ISSUE_LOST_BW.OVRSUB_M Dispersal 4.2.2.1
0x085 IBL_ISSUE_LOST_BW.STRUCT Dispersal 4.2.2.1
0x086 IBL_ISSUE_LOST_BW.9PLUS3 Dispersal 4.2.2.1
0x087 DPFQ_ENQ.ANY DPF 4.2.16.6
0x088 DPFQ_ENQ.INST_ANY DPF 4.2.16.6
0x089 DPFQ_ENQ.LFETCH DPF 4.2.16.6
O0x08A DPFQ_ENQ.LFETCH_COUNT DPF 4.2.16.6
0x08B DPFQ_ENQ.MOV_BSPST DPF 4.2.16.6
0x08C DPFQ_ENQ.RSE_ANY DPF 4.2.16.6
0x08D DPFQ_ENQ.RSE_LOAD DPF 4.2.16.6
Ox08E DPFQ_ENQ.RSE_STORE DPF 4.2.16.6
Ox08F DPFQ_ENQ.FLD_ANY DPF 4.2.16.6
0x090 DPFQ_ENQ.FLD_TARGET DPF 4.2.16.6
0x091 DPFQ_ENQ.FLD_FWD DPF 4.2.16.6
0x092 DPFQ_ENQ.FLD_BWD DPF 4.2.16.6
0x093 DPFQ_ENQ.FLD_BIDI DPF 4.2.16.6
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Ec\:)%r;t Symbol Name Area Section
0x094 DPFQ_ENQ.MLD DPF 4.2.16.6
0x095 DPFQ_ENQ_OVERFLOW.ANY DPF 4.2.16.7
0x096 DPFQ_ENQ_OVERFLOW.INST_ANY DPF 4.2.16.7
0x097 DPFQ_ENQ_OVERFLOW.LFETCH DPF 4.2.16.7
0x098 DPFQ_ENQ_OVERFLOW.LFETCH_COUNT DPF 4.2.16.7
0x099 DPFQ_ENQ_OVERFLOW.MOV_BSPST DPF 4.2.16.7
O0x09A DPFQ_ENQ_OVERFLOW.RSE_ANY DPF 4.2.16.7
0x09B DPFQ_ENQ_OVERFLOW.RSE_LOAD DPF 4.2.16.7
0x09C DPFQ_ENQ_OVERFLOW.RSE_STORE DPF 4.2.16.7
0x09D DPFQ_ENQ_OVERFLOW.FLD_ANY DPF 4.2.16.7
Ox09E DPFQ_ENQ_OVERFLOW.FLD_TARGET DPF 4.2.16.7
Ox09F DPFQ_ENQ_OVERFLOW.FLD_FWD DPF 4.2.16.7
O0x0AO DPFQ_ENQ_OVERFLOW.FLD_BWD DPF 4.2.16.7
Ox0A1 DPFQ_ENQ_OVERFLOW.FLD_BIDI DPF 4.2.16.7
Ox0A2 DPFQ_ENQ_OVERFLOW.MLD DPF 4.2.16.7
Ox0A3 DPFQ_DEQ.ANY DPF 4.2.16.2
O0x0A4 DPFQ_DEQ.INST_ANY DPF 4.2.16.2
Ox0A5 DPFQ_DEQ.LFETCH DPF 4.2.16.2
O0x0A6 DPFQ_DEQ.LFETCH_COUNT DPF 4.2.16.2
OxO0A7 DPFQ_DEQ.MOV_BSPST DPF 4.2.16.2
Ox0A8 DPFQ_DEQ.RSE_ANY DPF 4.2.16.2
O0x0A9 DPFQ_DEQ.RSE_LOAD DPF 4.2.16.2
Ox0AA DPFQ_DEQ.RSE_STORE DPF 4.2.16.2
Ox0AB DPFQ_DEQ.FLD_ANY DPF 4.2.16.2
OxO0AC DPFQ_DEQ.FLD_TARGET DPF 4.2.16.2
OXOAD | DPFQ_DEQ.FLD_FWD DPF 4.2.16.2
OXO0AE DPFQ_DEQ.FLD_BWD DPF 4.2.16.2
OxOAF DPFQ_DEQ.FLD_BIDI DPF 4.2.16.2
0x0BO DPFQ_DEQ.MLD DPF 4.2.16.2
0x0B1 DPFQ_DEQ_PREEMPT.ANY DPF 4.2.16.3
0x0B2 DPFQ_DEQ_PREEMPT.INST_ANY DPF 4.2.16.3
0x0B3 DPFQ_DEQ_PREEMPT.LFETCH DPF 4.2.16.3
0x0B4 DPFQ_DEQ_PREEMPT.LFETCH_COUNT DPF 4.2.16.3
0x0B5 DPFQ_DEQ_PREEMPT.MOV_BSPST DPF 4.2.16.3
0x0B6 DPFQ_DEQ_PREEMPT.TIMEOUT DPF 4.2.16.3
0x0B7 DPFQ_DEQ_REJECT.ANY DPF 4.2.16.5
0x0B8 DPFQ_DEQ_REJECT.INST_ANY DPF 4.2.16.5
0x0B9 DPFQ_DEQ_REJECT.LFETCH DPF 4.2.16.5
OxOBA DPFQ_DEQ_REJECT.LFETCH_COUNT DPF 4.2.16.5
0x0BB DPFQ_DEQ_REJECT.MOV_BSPST DPF 4.2.16.5
0x0BC DPFQ_DEQ_REJECT.RSE_ANY DPF 4.2.16.5
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Event Symbol Name Area Section

Code
0x0BD DPFQ_DEQ_REJECT.RSE_LOAD DPF 4.2.16.5
OxOBE DPFQ_DEQ_REJECT.RSE_STORE DPF 4.2.16.5
OxOBF DPFQ_DEQ_REJECT.FLD_ANY DPF 4.2.16.5
0x0CO DPFQ_DEQ_REJECT.FLD_TARGET DPF 4.2.16.5
0x0C1 DPFQ_DEQ_REJECT.FLD_FWD DPF 4.2.16.5
0x0C2 DPFQ_DEQ_REJECT.FLD_BWD DPF 4.2.16.5
0x0C3 DPFQ_DEQ_REJECT.FLD_BIDI DPF 4.2.16.5
0x0C4 DPFQ_DEQ_REJECT.MLD DPF 4.2.16.5
0x0C5 DPFQ_DEQ_PREEMPT_REJECT.ANY DPF 4.2.16.4
0x0C6 DPFQ_DEQ_PREEMPT_REJECT.LFETCH DPF 4.2.16.4
0x0C7 DPFQ_DEQ_PREEMPT_REJECT.LFETCH_COUNT DPF 4.2.16.4
0x0C8 DPFQ_DEQ_PREEMPT_REJECT.MOV_BSPST DPF 4.2.16.4
0x0C9 DAHS_UNDERFLOW DPF 4.2.16.1
Ox0CA RETIRED_INST_M.MOVTOBSPST Execution 4.2.3.24
0x0CB FLD_HWPREF_INS.ANY DPF 4.2.16.8
0x0CC FLD_HWPREF_INS.CANCEL_FILL DPF 4.2.16.8
0x0CD FLD_HWPREF_INS.DTLB_MISS DPF 4.2.16.8
OxOCE FLD_HWPREF_INS.FLDTLB_MISS DPF 4.2.16.8
OxOCF FLD_HWPREF_INS.NEIGHBOR DPF 4.2.16.8
0x0DO FLD_HWPREF_INS.STORE_ALIAS DPF 4.2.16.8
0x0D1 FLD_HWPREF_INS.OZQ_FULL DPF 4.2.16.8
0x0D2 FLD_HWPREF_INS.FLUSH_STORE DPF 4.2.16.8
0x0D3 FLD_HWPREF_INS.ACQ_PEND DPF 4.2.16.8
0x0D4 FLD_HWPREF_INS.REL_OP DPF 4.2.16.8
0x0D5 FLD_HWPREF_INS.DTLB_MISS_LFETCH DPF 4.2.16.8
0x0D6 FLD_HWPREF_INS.FLDTLB_MISS_LFETCH DPF 4.2.16.8
0x0D7 FLD_HWPREF_INS.OZQ_FULL_LFETCH DPF 4.2.16.8
0x0D8 FLD_HINT_NO_MULIT_HWPREF FLD 4.2.12.6
0x0D9 PREF_DROP.FLDTLB_MISS DPF 4.2.16.9
OxODA PREF_DROP.DTLB_MISS DPF 4.2.16.9
0xoDB PREF_DROP.FLD_HIT DPF 4.2.16.9
0x0DC PREF_DROP.FLD_SECONDARY_MISS DPF 4.2.16.9
0x0DD DATA_REF.ANY FLD 4.2.12.1
OxODE DATA_REF.LOAD_INT FLD 4.2.12.1
OxODE RETIRED_INST_LD_INT Execution 4.2.3.23
OxODF DATA_REF.LOAD_FP FLD 4.2.12.1
OxODF RETIRED_INST_LD_FP Execution 4.2.3.22
Ox0EO DATA_REF.LOAD_RSE FLD 4.2.12.1
Ox0E1 DATA_REF.STORE_INT FLD 4.2.12.1
OxOE1 RETIRED_INST_ST_INT Execution 4.2.3.30
OxO0E2 DATA_REF.STORE_FP FLD 4.2.12.1
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OxO0E2 RETIRED_INST_ST_FP Execution 4.2.3.29
OxO0E3 DATA_REF.STORE_RSE FLD 4.2.12.1
OxO0E4 DATA_REF.LFETCH FLD 4.2.12.1
OxOE5 DATA_REF.SEMAPHORE FLD 4.2.12.1
OxOES5 RETIRED_INST_SEMAPHORE Execution 4.2.3.28
Ox0E6 DATA_REF.HW_PREF FLD 4.2.12.1
OxOE7 DATA_REF.LOAD_HPW FLD 4.2.12.1
OxOES8 DATA_REF.LOAD_ANY FLD 4.2.12.1
Ox0E9 DATA_REF.STORE_ANY FLD 4.2.12.1
OxOEA FLD_LOAD.ANY FLD 4.2.12.9
OxOEB FLD_LOAD.INT FLD 4.2.12.9
OxO0EC FLD_LOAD_MISS.ANY FLD 4.2.12.10
OxOED FLD_LOAD_MISS.INT FLD 4.2.12.10
OxOEE FLD_LOAD_MISS.RSE FLD 4.2.12.10
OxOEF FLD_HIT.ANY FLD 4.2.12.7
OxOFO FLD_SPEC_INVAL.ANY FLD 4.2.12.11
OxOF1 FLD_SPEC_INVAL.INST FLD 4.2.12.11
Ox0F2 FLD_SPEC_INVAL.FLUSH_STORE FLD 4.2.12.11
OxOF3 FLD_SPEC_INVAL.SNOOP FLD 4.2.12.11
OxOF4 RETIRED_INST_M.ACQ Execution 4.2.3.24
OxO0F5 RETIRED_INST_M.REL Execution 4.2.3.24
OxOF6 FLD_HINT_NOALLOC FLD 4.2.12.5
OxOF7 FLD_LINE_DEMOTE FLD 4.2.12.8
OxO0F8 FLD_FILL_REQ.ANY FLD 4.2.12.4
OxOF9 FLD_FILL_REQ.LOAD_INT FLD 4.2.12.4
OxOFA FLD_FILL_REQ.LOAD_RSE FLD 4.2.12.4
OxOFB FLD_FILL_REQ.LFETCH FLD 4.2.12.4
OxOFC FLD_FILL_REQ.HW_PREF FLD 4.2.12.4
OxOFD FLD_FILL_CANCEL.ANY FLD 4.2.12.2
OXOFE FLD_FILL_CANCEL.MLD FLD 4.2.12.2
OxXOFF FLD_FILL_CANCEL.INFAB FLD 4.2.12.2
0x100 FLD_FILL_CANCEL.POSTFAB FLD 4.2.12.2
0x101 FLD_FILL FLD 4.2.12.1
0x102 FLD_FILL_LRU FLD 4.2.12.3
0x103 FLDTLB_LOAD_MISS.ANY FLDTLB 4.2.14.2
0x104 FLDTLB_LOAD_MISS.INT FLDTLB 4.2.14.2
0x105 FLDTLB_LOAD_MISS.RSE FLDTLB 4.2.14.2
0x106 FLDTLB_INS_REQ.COMPLETE FLDTLB 4.2.14.1
0x107 FLDTLB_INS_REQ.RETIRED FLDTLB 4.2.14.1
0x108 FLDTLB_INS_REQ.NON_RETIRED FLDTLB 4.2.14.1
0x109 FLDTLB_INS_REQ.CANCEL FLDTLB 4.2.14.1

Intel® Itanium® Processor 9500 Series

Reference Manual for Software Development and Optimization Guide

139



intel.

Core Performance Monitor Events

Table 4-1. All Performance Monitors Ordered by Code (Sheet 8 of 20)

Event Symbol Name Area Section

Code
Ox10A | M_ASYNC_OP_ISSUE.ANY Dispersal 4.2.2.4
0x10B M_ASYNC_OP_ISSUE.NONE Dispersal 4.2.2.4
0x10C M_ASYNC_OP_ISSUE.SNOOP_PALKUP Dispersal 4.2.2.4
0x10D M_ASYNC_OP_ISSUE.SNOOP Dispersal 4.2.2.4
O0x10E M_ASYNC_OP_ISSUE.SNOOP_S Dispersal 4.2.2.4
O0x10F M_ASYNC_OP_ISSUE.HPW_LOAD Dispersal 4.2.2.4
0x110 M_ASYNC_OP_ISSUE.CRAB_RET Dispersal 4224
Ox111 M_ASYNC_OP_ISSUE.HW_PREF Dispersal 4.2.2.4
0x112 M_ASYNC_OP_ISSUE.PAPURGE Dispersal 4.2.2.4
0x113 M_ASYNC_OP_ISSUE.VAMERR_VAPURGE Dispersal 4.2.2.4
0x114 M_ASYNC_OP_ISSUE.DTLBTRNSFR_TLBINSERT Dispersal 4.2.2.4
0x115 M_ASYNC_OP_ISSUE.FLUSH_ST_INVAL Dispersal 4.2.2.4
0x116 M_ASYNC_OP_ISSUE.PAMERR_PAPURGE Dispersal 4.2.2.4
0x117 M_ASYNC_OP_ISSUE.VRNRIDVPN_PURGE Dispersal 4.2.2.4
0x118 M_ASYNC_OP_ISSUE.RIDVPN_PURGE Dispersal 4.2.2.4
0x119 M_ASYNC_OP_ISSUE.TLB_TSWITCH Dispersal 4.2.2.4
Ox11A M_ASYNC_OP_ISSUE.TSWITCH Dispersal 4.2.2.4
0x11B M_ASYNC_OP_ISSUE.HPW_TLBINSERT Dispersal 4.2.2.4
0x11C M_ASYNC_OP_ISSUE.HPW_FAULT Dispersal 4224
0x11D M_ASYNC_OP_ISSUE.ITC_D Dispersal 4.2.2.4
Ox11E M_ASYNC_OP_ISSUE.ITR_D Dispersal 4.2.2.4
Ox11F M_ASYNC_OP_ISSUE.PTR_D Dispersal 4224
0x120 M_ASYNC_OP_ISSUE.MOVTORR Dispersal 4.2.2.4
0x121 M_ASYNC_OP_ISSUE.MOVTOPKR Dispersal 4.2.2.4
0x122 M_ASYNC_OP_ISSUE.PTC_L Dispersal 4.22.4
0x123 M_ASYNC_OP_ISSUE.PTC_E Dispersal 4.2.2.4
0x124 M_ASYNC_OP_ISSUE.PTC_G Dispersal 4.2.2.4
0x125 M_ASYNC_OP_ISSUE.PTC_GA Dispersal 4224
0x126 M_ASYNC_OP_ISSUE.SHOOTDOWN_G Dispersal 4.2.2.4
0x127 M_ASYNC_OP_ISSUE.SHOOTDOWN_GA Dispersal 4.2.2.4
0x128 M_ASYNC_OP_ISSUE.RSE_STORE Dispersal 4224
0x129 M_ASYNC_OP_ISSUE.RSE_LOAD Dispersal 4.2.2.4
O0x12A | MT_BE_THRSW_ACTUAL_OUT.ANY Multithreading | 4.2.21.6
0x12B MT_BE_THRSW_ACTUAL_OUT.MLD_USE Multithreading | 4.2.21.6
0x12C MT_BE_THRSW_ACTUAL_OUT.HPW_MISS Multithreading 4.2.21.6
0x12D | MT_BE_THRSW_ACTUAL_OUT.IBQ_EMPTY Multithreading | 4.2.21.6
Ox12E MT_BE_THRSW_ACTUAL_OUT.ATPAUSE Multithreading 4.2.21.6
Ox12F MT_BE_THRSW_ACTUAL_OUT.LP_ENTER Multithreading 4.2.21.6
0x130 MT_BE_THRSW_ACTUAL_OUT.RFIX Multithreading | 4.2.21.6
0x131 MT_BE_THRSW_ACTUAL_OUT.INJ_DBG Multithreading | 4.2.21.6
0x132 MT_BE_THRSW_ACTUAL_IN.TIMEOUT Multithreading 4.2.21.5
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0x133 MT_BE_THRSW_ACTUAL_IN.MLDRTN Multithreading 4.2.21.5
0x134 MT_BE_THRSW_ACTUAL_IN.HPWINS Multithreading 4.2.21.5
0x135 MT_BE_THRSW_ACTUAL_IN.IBQ_NOTEMPTY Multithreading 4.2.21.5
0x136 MT_BE_THRSW_ACTUAL_IN.ALAT_INVAL Multithreading | 4.2.21.5
0x137 MT_BE_THRSW_ACTUAL_IN.LP_EXIT Multithreading 4.2.21.5
0x138 MT_BE_THRSW_ACTUAL_IN.FAIR Multithreading 4.2.21.5
0x139 MT_BE_THRSW_DROP Multithreading | 4.2.21.8
Ox13A MT_BE_THRSW_DISABLE.EXPL Multithreading 4.2.21.7
0x13B MT_BE_THRSW_DISABLE.IMPL Multithreading 4.2.21.7
0x13C MT_BE_THRSW_HOLD Multithreading | 4.2.21.9
0x13D MT_BE_THRSW_STALL.ANY Multithreading 4.2.21.10
Ox13E MT_BE_THRSW_STALL.SWITCH Multithreading 4.2.21.10
O0x13F MT_BE_THRSW_STALL.PIPE Multithreading 4.2.21.10
0x140 MT_BE_THRSW_STALL.RSE Multithreading 4.2.21.10
0x141 MT_BE_THRSW_STALL.CRAB Multithreading 4.2.21.10
0x142 MT_BE_THRSW_STALL.FLD Multithreading 4.2.21.10
0x143 MT_BE_BGND_CYC_IN_STATE.HU Multithreading | 4.2.21.2
0x144 MT_BE_BGND_CYC_IN_STATE.HW Multithreading 4.2.21.2
0x145 MT_BE_BGND_CYC_IN_STATE.NU Multithreading | 4.2.21.2
0x146 MT_BE_BGND_CYC_IN_STATE.NW Multithreading | 4.2.21.2
0x147 MT_BE_BGND_CYC_IN_STATE.LU Multithreading 4.2.21.2
0x148 MT_BE_BGND_CYC_IN_STATE.LW Multithreading | 4.2.21.2
0x149 MT_BE_FAIR_STATE.GREEN Multithreading 4.2.21.3
Ox14A MT_BE_FAIR_STATE.YELLOW Multithreading 4.2.21.3
0x14B MT_BE_FAIR_STATE.ORANGE Multithreading 4.2.21.3
0x14C MT_BE_FAIR_STATE.RED Multithreading 4.2.21.3
0x14D MT_BE_FAIR_TRANSITION.GRN2YLW Multithreading 4.2.21.4
Ox14E MT_BE_FAIR_TRANSITION.YLW20ORN Multithreading 4.2.21.4
0x14F MT_BE_FAIR_TRANSITION.ORN2RED Multithreading 4.2.21.4
0x150 MT_BE_FAIR_TRANSITION.GRNO Multithreading 4.2.21.4
0x151 ALAT_STORE_HIT Execution 4.2.3.2
0x152 ALAT_ENTRY_REPLACED Execution 4.2.3.1
0x153 RSE_CURRENT_REG.MSB RSE 4.2.18.1
0x154 RSE_CURRENT_REG.LSB RSE 4.2.18.1
0x155 RSE_DIRTY_REG.MSB RSE 4.2.18.2
0x156 RSE_DIRTY_REG.LSB RSE 4.2.18.2
0x157 RETIRED_INST_RSE Execution 4.2.3.27
0x158 RSE_REF_RETIRED.ANY RSE 4.2.18.3
0x159 RSE_REF_RETIRED.LOAD RSE 4.2.18.3
Ox15A RSE_REF_RETIRED.STORE RSE 4.2.18.3
0x801 BR_BE_PRED_DETAIL.STG Branch 4.2.6.1
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0x802 BR_BE_PRED_DETAIL.ROT Branch 4.2.6.1
0x803 BR_BE_PRED_DETAIL.PFS Branch 4.2.6.1
0x804 BR_BE_PRED_DETAIL.OTHER Branch 4.2.6.1
0x805 BR_BE_PRED_DETAIL.ANY_RETIRED Branch 4.2.6.1
0x806 BR_BE_PRED_DETAIL.UNRETIRED Branch 4.2.6.1
0x807 BR_BE_PRED_DETAIL.ANY Branch 4.2.6.1
0x808 BR_PATH_PRED.ANY_MISPRED_NOT_TAKEN Branch 4.2.6.3
0x809 BR_PATH_PRED.ANY_MISPRED_TAKEN Branch 4.2.6.3
Ox80A BR_PATH_PRED.ANY_OKPRED_NOT_TAKEN Branch 4.2.6.3
0x80B BR_PATH_PRED.ANY_OKPRED_TAKEN Branch 4.2.6.3
0x80C BR_PATH_PRED.IPREL_MISPRED_NOT_TAKEN Branch 4.2.6.3
0x80D BR_PATH_PRED.IPREL_MISPRED_TAKEN Branch 4.2.6.3
Ox80E BR_PATH_PRED.IPREL_OKPRED_NOT_TAKEN Branch 4.2.6.3
Ox80F BR_PATH_PRED.IPREL_OKPRED_TAKEN Branch 4.2.6.3
0x810 BR_PATH_PRED.RETURN_MISPRED_NOT_TAKEN Branch 4.2.6.3
0x811 BR_PATH_PRED.RETURN_MISPRED_TAKEN Branch 4.2.6.3
0x812 BR_PATH_PRED.RETURN_OKPRED_NOT_TAKEN Branch 4.2.6.3
0x813 BR_PATH_PRED.RETURN_OKPRED_TAKEN Branch 4.2.6.3
0x814 BR_PATH_PRED.NON_RETIND_MISPRED_NOT_TAKEN Branch 4.2.6.3
0x815 BR_PATH_PRED.NON_RETIND_MISPRED_TAKEN Branch 4.2.6.3
0x816 BR_PATH_PRED.NON_RETIND_OKPRED_NOT_TAKEN Branch 4.2.6.3
0x817 BR_PATH_PRED.NON_RETIND_OKPRED_TAKEN Branch 4.2.6.3
0x818 BR_PRED_UNKNOWN.ANY Branch 4.2.6.5
0x819 BR_PRED_UNKNOWN.ANY_TAKEN Branch 4.2.6.5
Ox81A BR_PRED_UNKNOWN.IPREL Branch 4.2.6.5
0x81B BR_PRED_UNKNOWN.IPREL_TAKEN Branch 4.2.6.5
0x81C BR_PRED_UNKNOWN.RETURN Branch 4.2.6.5
0x81D BR_PRED_UNKNOWN.RETURN_TAKEN Branch 4.2.6.5
Ox81E BR_PRED_UNKNOWN.NON_RETIND Branch 4.2.6.5
Ox81F BR_PRED_UNKNOWN.NON_RETIND_TAKEN Branch 4.2.6.5
0x820 BR_PRED_DETAIL.ANY_ANY_PRED Branch 4.2.6.4
0x820 RETIRED_INST_BR Execution 4.2.3.18
0x821 BR_PRED_DETAIL.ANY_CORR_PRED Branch 4.2.6.4
0x822 BR_PRED_DETAIL.ANY_WRONG_PATH Branch 4.2.6.4
0x823 BR_PRED_DETAIL.ANY_WRONG_TARGET Branch 4.2.6.4
0x824 BR_PRED_DETAIL.IPREL_ANY_PRED Branch 4.2.6.4
0x825 BR_PRED_DETAIL.IPREL_CORR_PRED Branch 4.2.6.4
0x826 BR_PRED_DETAIL.IPREL_WRONG_PATH Branch 4.2.6.4
0x827 BR_PRED_DETAIL.IPREL_WRONG_TARGET Branch 4.2.6.4
0x828 BR_PRED_DETAIL.RETURN_ANY_PRED Branch 4.2.6.4
0x829 BR_PRED_DETAIL.RETURN_CORR_PRED Branch 4.2.6.4
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Ox82A BR_PRED_DETAIL.RETURN_WRONG_PATH Branch 4.2.6.4
0x82B BR_PRED_DETAIL.RETURN_WRONG_TARGET Branch 4.2.6.4
0x82C BR_PRED_DETAIL.NON_RETIND_ANY_PRED Branch 4.2.6.4
0x82D BR_PRED_DETAIL.NON_RETIND_CORR_PRED Branch 4.2.6.4
Ox82E BR_PRED_DETAIL.NON_RETIND_WRONG_PATH Branch 4.2.6.4
Ox82F BR_PRED_DETAIL.NON_RETIND_WRONG_TARGET Branch 4.2.6.4
0x830 BR_ENC_PRED_DETAIL.ENC_ANY_PRED Branch 4.2.6.2
0x831 BR_ENC_PRED_DETAIL.ENC_CORR_PRED Branch 4.2.6.2
0x832 BR_ENC_PRED_DETAIL.ENC_WRONG_PATH Branch 4.2.6.2
0x833 BR_ENC_PRED_DETAIL.ENC_WRONG_TARGET Branch 4.2.6.2
0x834 BR_ENC_PRED_DETAIL.OVRSUB_ANY_PRED Branch 4.2.6.2
0x835 BR_ENC_PRED_DETAIL.OVRSUB_CORR_PRED Branch 4.2.6.2
0x836 BR_ENC_PRED_DETAIL.OVRSUB_WRONG_PATH Branch 4.2.6.2
0x837 BR_ENC_PRED_DETAIL.OVRSUB_WRONG_TARGET Branch 4.2.6.2
0x838 BR_ENC_PRED_DETAIL.ENC_OVRSUB_ANY_PRED Branch 4.2.6.2
0x839 BR_ENC_PRED_DETAIL.ENC_OVRSUB_CORR_PRED Branch 4.2.6.2
Ox83A BR_ENC_PRED_DETAIL.ENC_OVRSUB_WRONG_PATH Branch 4.2.6.2
0x83B BR_ENC_PRED_DETAIL.ENC_OVRSUB_WRONG_TARGET Branch 4.2.6.2
0x83C MLI_READ.ANY_ANY MLI 4.2.9.2
0x83D MLI_READ.ANY_DMND MLI 4.2.9.2
Ox83E MLI_READ.ANY_PREF MmLI 4.2.9.2
Ox83F MLI_READ.HIT_ANY MLI 4.2.9.2
0x840 MLI_READ.HIT_DMND_NOLRU MLI 4.2.9.2
0x841 MLI_READ.HIT_PREF_NOLRU MmLI 4.2.9.2
0x842 MLI_READ.HIT_DMND_LRU MLI 4.2.9.2
0x843 MLI_READ.HIT_PREF_LRU MLI 4.2.9.2
0x844 MLI_READ.MISS_ANY MLI 4.2.9.2
0x845 MLI_READ.MISS_DMND MLI 4.2.9.2
0x846 MLI_READ.MISS_PREF MLI 4.2.9.2
0x847 MLI_READ_UC.ANY MLI 4.2.9.3
0x848 MLI_READ_UC.DMND MLI 4.2.9.3
0x849 MLI_READ_UC.PREF MLI 4.2.9.3
Ox84A MLI_RECIRCULATE.ANY MLI 4.2.9.4
0x84B MLI_RECIRCULATE.DMND MLI 4.2.9.4
0x84C MLI_RECIRCULATE.PREF MLI 4.2.9.4
0x84D MLI_SNOOP_INVAL_BLK_LOOKUP MLI 4.2.9.6
Ox84E MLI_HIT_CONFLICT.ANY MLI 4.2.9.1
O0x84F MLI_HIT_CONFLICT.DMND MLI 4.2.9.1
0x850 MLI_HIT_CONFLICT.PREF MLI 4.2.9.1
0x851 MLI_SPEC_ABORT MLI 4.2.9.7
0x852 MLI_SNOOP_HIT MLI 4.2.9.5
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0x853 FP_FCHKF_FAIL Execution 4.2.3.14
0x854 FP_FALSE_SIR Execution 4.2.3.13
0x855 FP_TRUE_SIR Execution 4.2.3.17
0x856 FP_DENORMAL Execution 4.2.3.12
0x857 FP_FLUSH_TO_ZERO.FTZ_REAL Execution 4.2.3.16
0x858 FP_FLUSH_TO_ZERO.FTZ_POSS Execution 4.2.3.16
0x859 FLI_READ.ANY FLI 4.2.8.10
Ox85A FLI_READ_MISS.ANY FLI 4.2.8.11
0x85B FLI_READ.DMND FLI 4.2.8.10
0x85C FLI_FILL FLI 4.2.8.3
0x85D FLI_READ_MISS.DMND FLI 4.2.8.11
Ox85E FLI_READ.PREF FLI 4.2.8.10
Ox85F FLI_READ_MISS.PREF FLI 4.2.8.11
0x860 MLI_RETURN_LINE FLI 4.2.8.14
0x861 FLI_PREF_STALL.ANY FLI 4.2.8.5
0x862 FLI_PREF_STALL.FLOW FLI 4.2.8.5
0x863 FLI_READ.SNOOP FLI 4.2.8.10
0x864 FLI_READ.SNOOP_HIT FLI 4.2.8.10
0x865 FLI_PURGE FLI 4.2.8.6
0x866 FLI_STREAM_PREF FLI 4.2.8.13
0x867 FLI_RAB_FULL FLI 4.2.8.9
0x868 FLI_RAB_ALMOST_FULL FLI 4.2.8.8
0x869 FLI_FETCH_RAB_HIT.DMND FLI 4.2.8.2
Ox86A FLI_FETCH_RAB_HIT.PREF FLI 4.2.8.2
0x86B FLI_FETCH_JIT_HIT FLI 4.2.8.1
0x86C FLI_PVAB_OVERFLOW FLI 4.2.8.7
0x86D FLITLB_MISS FLITLB 4.2.10.2
Ox86E MLITLB_MISS MLITLB 4.2.11.2
Ox86F FLITLB_INSERT_HPW FLITLB 4.2.10.1
0x870 MLITLB_HPW_ABORTS MLITLB 4.2.11.1
0x871 EAR_EVENT_INST Execution 4.2.3.11
0x872 FLI_INST_INSERT_RAB FLI 4.2.8.4
0x873 FLI 4.2.8.12
0x874 MT_FE_BE_IN_SAME_THREAD Multithreading | 4.2.21.11
0x875 FE_OP_CYCLES Basic 4.2.1.3
0x876 MT_FE_THRSW_ACTUAL_OUT.ANY Multithreading | 4.2.21.14
ox877 MT_FE_THRSW_ACTUAL_OUT.TIMEOUT Multithreading 4.2.21.14
0x878 MT_FE_THRSW_ACTUAL_OUT.IBQ_FULL Multithreading | 4.2.21.14
0x879 MT_FE_THRSW_ACTUAL_IN.IBQ_NOTFULL Multithreading | 4.2.21.13
OX87A MT_FE_THRSW_ACTUAL_IN.IBQ_EMPTY Multithreading | 4.2.21.13
0x87B MT_FE_THRSW_ACTUAL_OUT.IBQ_NOTEMPTY Multithreading | 4.2.21.14
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0x87C MT_FE_THRSW_ACTUAL_OUT.MLI_WBMISS Multithreading 4.2.21.14
0x87D MT_FE_THRSW_ACTUAL_IN.MLI_WBRTN Multithreading 4.2.21.13
Ox87E MT_FE_THRSW_ACTUAL_OUT.MLI_UCMISS Multithreading 4.2.21.14
Ox87F MT_FE_THRSW_ACTUAL_IN.MLI_UCRTN Multithreading | 4.2.21.13
0x880 MT_FE_THRSW_ACTUAL_OUT.BRQ_BLK Multithreading 4.2.21.14
0x881 MT_FE_THRSW_ACTUAL_IN.BRQ_NON_BLK Multithreading 4.2.21.13
0x882 MT_FE_THRSW_ACTUAL_OUT.HINT_BSWT Multithreading | 4.2.21.14
0x883 MT_FE_THRSW_ACTUAL_OUT.BE_FOLLOW Multithreading 4.2.21.14
0x884 MT_FE_THRSW_ACTUAL_OUT.LOCKED Multithreading 4.2.21.14
0x885 MT_FE_THRSW_MISS_OUT.ANY Multithreading | 4.2.21.16
0x886 MT_FE_THRSW_MISS_IN.ANY Multithreading 4.2.21.15
0x887 MT_FE_THRSW_MISS_OUT.TIMEOUT Multithreading 4.2.21.16
0x888 MT_FE_THRSW_MISS_OUT.IBQ_FULL Multithreading | 4.2.21.16
0x889 MT_FE_THRSW_MISS_IN.IBQ_NOTFULL Multithreading | 4.2.21.15
Ox88A MT_FE_THRSW_MISS_IN.IBQ_EMPTY Multithreading 4.2.21.15
0x88B MT_FE_THRSW_MISS_OUT.IBQ_NOTEMPTY Multithreading | 4.2.21.16
0x88C MT_FE_THRSW_MISS_OUT.MLI_WBMISS Multithreading 4.2.21.16
0x88D MT_FE_THRSW_MISS_IN.MLI_WBRTN Multithreading 4.2.21.15
OX88E MT_FE_THRSW_MISS_OUT.MLI_UCMISS Multithreading | 4.2.21.16
Ox88F MT_FE_THRSW_MISS_IN.MLI_UCRTN Multithreading 4.2.21.15
0x890 MT_FE_THRSW_MISS_OUT.BRQ_BLK Multithreading 4.2.21.16
0x891 MT_FE_THRSW_MISS_IN.BRQ_NON_BLK Multithreading | 4.2.21.15
0x892 MT_FE_THRSW_MISS_OUT.HINT_BSWT Multithreading 4.2.21.16
0x893 MT_FE_THRSW_MISS_OUT.BE_FOLLOW Multithreading 4.2.21.16
0x894 MT_FE_THRSW_MISS_OUT.LOCKED Multithreading 4.2.21.16
0x895 MT_FE_THRSW_STALL.ANY Multithreading 4.2.21.17
0x896 MT_FE_THRSW_STALL.MTLCK Multithreading | 4.2.21.17
0x897 MT_FE_THRSW_STALL.EXPL Multithreading 4.2.21.17
0x898 MT_FE_THRSW_STALL.IMPL Multithreading 4.2.21.17
0x899 MT_FE_THRSW_STALL.BLK_ANY Multithreading | 4.2.21.17
OX89A MT_FE_THRSW_STALL.BLK_IPC_MISS Multithreading | 4.2.21.17
0x89B MT_FE_THRSW_STALL.BLK_IN_PROG Multithreading 4.2.21.17
0x89C MT_FE_THRSW_STALL. Multithreading | 4.2.21.17
0x89D MT_FE_THRSW_STALL.BLK_THRESH Multithreading 4.2.21.17
Ox89E MT_FE_BGND_CYC_IN_STATE.LOW Multithreading 4.2.21.12
OX89F MT_FE_BGND_CYC_IN_STATE.NOMINAL Multithreading | 4.2.21.12
O0X8A0 MT_FE_BGND_CYC_IN_STATE.HIGH Multithreading | 4.2.21.12
Ox8A1 CYC_FE_FWPROG Multithreading 4.2.21.1
OX8A2 CYC_FE_NO_BUBBLE Stall 4.25.4
Ox8A3 CYC_FE_BUBBLE.ANY Stall 4.2.5.1
Ox8A4 CYC_FE_RESTEER.ANY Stall 4.2.55
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Ox8A5 CYC_FE_RESTEER.IPREL Stall 4.2.55
Ox8A6 CYC_FE_RESTEER.BR_RETIND Stall 4.2.55
Ox8A7 CYC_FE_RESTEER.NON_RETIND Stall 4.2.55
Ox8A8 CYC_FE_RESTEER.SEQ_BR Stall 4.2.55
Ox8A9 CYC_FE_RESTEER.TSWITCH Stall 4.2.55
Ox8AA CYC_FE_RESTEER.BE_FLUSH Stall 4255
Ox8AB CYC_FE_FET_REPLAY.ANY Stall 4.2.5.2
Ox8AC CYC_FE_FET_REPLAY.BR_INIT Stall 4.2.5.2
Ox8AD CYC_FE_FET_REPLAY.BRQ_FULL Stall 4.2.5.2
OX8AE | CYC_FE_FET_REPLAY.BRQ_ WAIT Stall 4252
Ox8AF CYC_FE_FET_REPLAY.BR_INTRLCK Stall 4.2.5.2
0x8B0 CYC_FE_FET_REPLAY.RAB_FULL Stall 4.2.5.2
0x8B1 CYC_FE_FET_REPLAY.MT1 Stall 4.2.5.2
0x8B2 CYC_FE_FET_STALL.ANY Stall 4.2.5.3
0x8B3 CYC_FE_FET_STALL.IBQ_FULL Stall 4.2.5.3
0x8B4 CYC_FE_FET_STALL.FLI_MISS Stall 4.2.5.3
0x8B5 CYC_FE_FET_STALL.FLITLB_MISS Stall 4.2.5.3
0x8B6 CYC_FE_FET_STALL.MT1 Stall 4.2.5.3
0x8B7 FE_RESTEER.ANY Stall 4.2.5.6
0x8B8 FE_RESTEER.FET_REPLAY Stall 4.2.5.6
0x8B9 FE_RESTEER.OB_IPREL Stall 4.2.5.6
Ox8BA FE_RESTEER.1B_IPREL Stall 4.2.5.6
0x8BB FE_RESTEER.3B_IPREL Stall 4.2.5.6
0x8BC FE_RESTEER.1B_BR_RETIND Stall 4.2.5.6
0x8BD FE_RESTEER.3B_BR_RETIND Stall 4.2.5.6
Ox8BE FE_RESTEER.3B_NON_RETIND Stall 4.2.5.6
Ox8BF FE_RESTEER.1B_SEQ_BR Stall 4.2.5.6
0x8CO0 FE_RESTEER.3B_SEQ_BR Stall 4256
0x8C1 FE_RESTEER.3B_MT Stall 4.2.5.6
0x8C2 FE_RESTEER.4B_MT Stall 4.2.5.6
0x8C3 FE_RESTEER.BE_FLUSH Stall 4.2.5.6
0xCO01 RIL_SNOOP_REQ.ANY RIL 4.2.17.28
0xC02 RIL_SNOOP_REQ.CODE_ANY RIL 4.2.17.28
0xC03 RIL_SNOOP_REQ.CODE_SELF RIL 4.2.17.28
0xC04 RIL_SNOOP_REQ.CODE_SIBLING RIL 4.2.17.28
0xC05 RIL_SNOOP_REQ.DATA_ANY RIL 4.2.17.28
0xC06 RIL_SNOOP_REQ.DATA_SELF RIL 4.2.17.28
0xC07 RIL_SNOOP_REQ.DATA_SIBLING RIL 4.2.17.28
0xC08 RIL_SNOOP_REQ.INVAL_ANY RIL 4.2.17.28
0xC09 RIL_SNOOP_REQ.INVAL_SELF RIL 4.2.17.28
OxCOA RIL_SNOOP_REQ.INVAL_SIBLING RIL 4.2.17.28

146 Intel® Itanium® Processor 9500 Series

Reference Manual for Software Development and Optimization Guide



Core Performance Monitor Events

Table 4-1. All Performance Monitors Ordered by Code (Sheet 15 of 20)

intel.

Ec\:)%r;t Symbol Name Area Section
0xCO0B RIL_SNOOP_REQ.INVAL_LLC_EVICT RIL 4.2.17.28
0xCoC RIL_SNOOP_RESP.MLD_MISS RIL 4.2.17.29
0xCOD RIL_SNOOP_RESP.WRQ_HIT_M RIL 4.2.17.29
OxCOE RIL_SNOOP_RESP.MLD_HIT_S RIL 4.2.17.29
OxCOF RIL_SNOOP_RESP.MLD_HIT_E RIL 4.2.17.29
0xC10 RIL_SNOOP_RESP.MLD_HIT_M RIL 4.2.17.29
0xC11 RIL_SNOOP_RESP.MLD_DEFER RIL 4.2.17.29
0xC12 RIL_REQ.ANY RIL 4.2.17.17
0xC13 RIL_REQ_REF.ANY RIL 4.2.17.20
0oxC14 RIL_REQ_REF_INST.ANY RIL 4.2.17.22
0xC15 RIL_REQ_REF_INST.NC RIL 4.2.17.22
0xC16 RIL_REQ_REF_INST.WB_ANY RIL 4.2.17.22
0oxC17 RIL_REQ_REF_INST.WB_DMND RIL 4.2.17.22
0xC18 RIL_REQ_REF_DATA.ANY RIL 4.2.17.21
0xC19 RIL_REQ_REF_DATA.WB_ANY RIL 4.2.17.21
OXC1A | RIL_REQ REF DATA.WB_MLD_ANY RIL 4.2.17.21
OxC1B | RIL_REQ_REF_DATA.WB_MLD_BUDDY RIL 4.2.17.21
OxC1C RIL_REQ_REF_DATA.WB_CRD RIL 4.2.17.21
0xC1D | RIL_REQ_REF DATA.WB_DRD RIL 4.2.17.21
OXC1E RIL_REQ_REF_DATA.WB_RFO RIL 4.2.17.21
OxC1F RIL_REQ_REF_DATA.WB_SELF_SNOOP RIL 4.2.17.21
0xC20 RIL_REQ_REF_DATA.NC_ANY RIL 4.2.17.21
0xC21 RIL_REQ_REF_DATA.NC_READ_ANY RIL 4.2.17.21
0xC22 RIL_REQ_REF_DATA.NC_READ_UC RIL 4.2.17.21
0xC23 RIL_REQ_REF_DATA.NC_WRITE_ANY RIL 4.2.17.21
0xC24 RIL_REQ_REF_DATA.NC_WRITE_WC_ANY RIL 4.2.17.21
0xC25 RIL_REQ_REF_DATA.NC_WRITE_WC_FULL RIL 4.2.17.21
0xC26 RIL_REQ_REF_DATA.NC_WRITE_UC RIL 4.2.17.21
0xC27 RIL_REQ_REF_DATA.NC_WRITE_WC_MLD RIL 4.2.17.21
0xC28 RIL_REQ_REF_DATA.DRQ_ANY RIL 4.2.17.21
0xC29 RIL_REQ_REF_DATA.WRQ_ANY RIL 4.2.17.21
OxC2A RIL_REQ_OTHER.WRTBCK_WRQ RIL 4.2.17.19
OxC2B | RIL_REQ_OTHER.WRQ_FC_FCI RIL 4.2.17.19
0xC2C | RIL_REQ_OTHER.WRTBCK_WRQ_SKIP RIL 4.2.17.19
0xC2D RIL_REQ_OTHER.WRQ_SKIP_LRUHINT RIL 4.2.17.19
OxC2E RIL_REQ_OTHER.WRTBCK_MLD_EVICT RIL 4.2.17.19
OxC2F RIL_REQ_OTHER.WRTBCK_MLD_FC RIL 4.2.17.19
0xC30 RIL_REQ_OTHER.FC RIL 4.2.17.19
0xC30 RETIRED_INST_FC Execution 4.2.3.19
0xC31 RIL_REQ_OTHER.FCI RIL 4.2.17.19
0xC31 RETIRED_INST_FCI Execution 4.2.3.20
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0xC32 RIL_REQ_OTHER.CC RIL 4.2.17.19
0xC33 RIL_REQ_OTHER.DRQ_ANY RIL 4.2.17.19
0xC34 RIL_REQ_OTHER.PTCG RIL 4.2.17.19
0xC34 RETIRED_INST_PTCG Execution 4.2.3.26
0xC35 RIL_REQ_OTHER.PTCG_PEND RIL 4.2.17.19
0xC36 RIL_REQ_OTHER.LRUHINT_FROM_MLD RIL 4.2.17.19
OxC37 RIL_REQ_OTHER.LRUHINT_ANY RIL 4.2.17.19
0xC38 RIL_REQ_OTHER.LRUHINT_MLD RIL 4.2.17.19
0xC39 RIL_REQ_OTHER.LRUHINT_MISS_ANY RIL 4.2.17.19
OxC3A RIL_REQ_OTHER.LRUHINT_MISS_MLD RIL 4.2.17.19
0xC3B RIL_REQ_HINT_NRU RIL 4.2.17.18
0xC3C LLC_REF_HIT.ANY LLC 4.2.19.1
0xC3D LLC_REF_HIT.NO_SNOOP LLC 4.2.19.1
OxC3E LLC_REF_HIT.SNOOP LLC 4.2.19.1
OxC3F LLC_REF_HIT.SNOOP_FWD LLC 4.2.19.1
0xC40 LLC_REF_SYS_ANY LLC 4.2.19.5
0xC41 LLC_REF_MISS.ANY LLC 4.2.19.2
0xC42 LLC_REF_MISS.MEM_LCL_ANY LLC 4.2.19.2
0xC43 LLC_REF_MISS.MEM_RMT_ANY LLC 4.2.19.2
0xC44 LLC_REF_MISS.MEM_LCL_NO_SNOOP LLC 4.2.19.2
0xC45 LLC_REF_MISS.MEM_LCL_SNOOP LLC 4.2.19.2
0xC46 LLC_REF_MISS.MEM_LCL_SNOOP_FWD LLC 4.2.19.2
0xC47 LLC_REF_MISS.MEM_RMT_NO_SNOOP LLC 4.2.19.2
0xC48 LLC_REF_MISS.MEM_RMT_SNOOP LLC 4.2.19.2
0xC49 LLC_REF_MISS.MEM_RMT_SNOOP_FWD LLC 4.2.19.2
OxC4A LLC_REF_UNKNOWN LLC 4.2.19.6
0xC4B LLC_REF_MISS_DATA.ANY LLC 4.2.19.3
0xC4C LLC_REF_MISS_DATA.READ LLC 4.2.19.3
0xC4D LLC_REF_MISS_INST.ANY LLC 4.2.19.4
OxC4E LLC_REF_MISS_INST.PRIMARY LLC 4.2.19.4
OxC4F RIL_SHOOTDOWN RIL 4.2.17.26
0xC50 RIL_SHOOTDOWN_PEND_CYC RIL 4.2.17.27
0OxC51 RIL_INTERRUPT RIL 4.2.17.14
0xC52 RIL_CBQ_EVICT.WCB_FLUSH RIL 4.2.17.3
0xC53 RIL_CBQ_EVICT.FULL RIL 4.2.17.3
0xC54 RIL_DATA_RETURN.PRI_ANY RIL 4.2.17.8
0xC55 RIL_DATA_RETURN.PRI_MLD RIL 4.2.17.8
0xC56 RIL_DATA_RETURN.MLD_ANY RIL 4.2.17.8
0OxC57 RIL_DATA_RETURN.MLD_CRIT RIL 4.2.17.8
0xC58 RIL_DATA_RETURN.EARLY_FILL_EM RIL 4.2.17.8
0xC59 RIL_DATA_RETURN.EARLY_FILL_S RIL 4.2.17.8
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OxC5A RIL_RESP.GO RIL 4.2.17.23
0xC5B RIL_RESP.WRITEPULL RIL 4.2.17.23
OxC5C RIL_BL_WRITE.ANY RIL 4.2.17.2
0xC5D RIL_BL_WRITE.WLB RIL 4.2.17.2
OxC5E RIL_BL_WRITE.WLB_BOGUS RIL 4.2.17.2
OxC5F RIL_BL_WRITE.SLB RIL 4.2.17.2
0xC60 RIL_ARB_PRI_LOST.AD RIL 4.2.17.1
0xC61 RIL_ARB_PRI_LOST.AD_FWD_PROG RIL 4.2.17.1
0xC62 RIL_ARB_PRI_LOST.BL RIL 4.2.17.1
0xC63 RIL_ARB_PRI_LOST.BL_FWD_PROG RIL 4.2.17.1
oxC64 RIL_CRDT_PRI_BLK.AD_ALL RIL 4.2.17.6
0xC65 RIL_CRDT_PRI_BLK.AD_FRQ RIL 4.2.17.6
0XC66 RIL_CRDT_PRI_BLK.AD_DRQ RIL 4.2.17.6
0xC67 RIL_CRDT_PRI_BLK.AD_WRQ RIL 4.2.17.6
0xC68 RIL_CRDT_PRI_BLK.AD_CBQ RIL 4.2.17.6
0xC69 RIL_CRDT_PRI_BLK.AK_ALL RIL 4.2.17.6
OxC6A RIL_CRDT_PRI_BLK.BL_ALL RIL 4.2.17.6
0xC6B RIL_CRDT_PRI_BLK.BL_SNQ RIL 4.2.17.6
OXC6C | RIL_CRDT_PRI_BLK.BL_WRQ RIL 4.2.17.6
0xC6D | RIL_CRDT_PRI_BLK.BL_CBQ RIL 4.2.17.6
OxC6E RIL_CRDT_MLD_FDB_FULL RIL 4.2.17.4
OxC6F RIL_CRDT_MLD_FDB_FULL_BLK RIL 4.2.17.5
0xC70 RIL_CRDT_SNQ_BLK.ANY RIL 4.2.17.7
OxC71 RIL_CRDT_SNQ_BLK.HALT RIL 4.2.17.7
0xC72 RIL_CRDT_SNQ_BLK.SRLZ RIL 4.2.17.7
0xC73 RIL_CRDT_SNQ_BLK.MLI_FWD_PROG RIL 4.2.17.7
0xC74 RIL_CRDT_SNQ_BLK.MLD_FWD_PROG RIL 4.2.17.7
0XC75 RIL_CRDT_SNQ_BLK.MLI_OR_MLD_FWD_PROG RIL 4.2.17.7
OxC76 RIL_CRDT_SNQ_BLK.MLI_FULL RIL 4.2.17.7
OxC77 RIL_CRDT_SNQ_BLK.MLD_FULL RIL 4.2.17.7
0xC78 RIL_CRDT_SNQ_BLK.MLI_OR_MLD_FULL RIL 4.2.17.7
0xC79 RIL_CRDT_SNQ_BLK.DFRQ RIL 4.2.17.7
OXC7A RIL_CRDT_SNQ_BLK.RSPQ RIL 4.2.17.7
OXC7B | RIL_CRDT_SNQ_BLK.SLB_DQ RIL 4.2.17.7
OxC7C | RIL_CRDT_SNQ_BLK.WLB_DQ RIL 4.2.17.7
OXC7D | RIL_CRDT_SNQ_BLK.ANY_Q_FULL RIL 4.2.17.7
OxXC7E RIL_FRQ.EMPTY RIL 4.2.17.12
OxC7F RIL_FRQ.LIMIT_HIT RIL 4.2.17.12
0xC80 RIL_DRQ.EMPTY RIL 4.2.17.9
0xC81 RIL_DRQ.LIMIT_HIT RIL 4.2.17.9
0xC82 RIL_WRQ.EMPTY RIL 4.2.17.32
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0xC83 RIL_WRQ.LIMIT_HIT RIL 4.2.17.32
oxC84 RIL_RRQ.LIMIT_HIT RIL 4.2.17.24
0xC85 RIL_SNQ.EMPTY RIL 4.2.17.30
0xC86 RIL_SNQ.LIMIT_HIT RIL 4.2.17.30
oxC87 RIL_FRQ_VALID.MSB RIL 4.2.17.13
0xC88 RIL_FRQ_VALID.LSB RIL 4.2.17.13
0xC89 RIL_DRQ_VALID.MSB RIL 4.2.17.11
OxC8A RIL_DRQ_VALID.LSB RIL 4.2.17.11
0xC8B RIL_WRQ_VALID.MSB RIL 4.2.17.33
0oxC8C RIL_WRQ_VALID.LSB RIL 4.2.17.33
0xC8D RIL_SNQ_VALID.MSB RIL 4.2.17.31
OxC8E RIL_SNQ_VALID.LSB RIL 4.2.17.31
OxC8F RIL_DRQ_PACE_BUBBLE RIL 4.2.17.10
0xC90 RIL_PRI_THROTTLE_ASSERTED RIL 4.2.17.15
0xC91 RIL_PRI_THROTTLE_RECOV RIL 4.2.17.16
0xC92 RIL_SEB.PTC_QUIESCE_PEND RIL 4.2.17.25
0xC93 RIL_SEB.LDST_QUIESCE_PEND RIL 4.2.17.25
0xC94 RIL_SEB.BGF_QUIESCE_ACTIVE RIL 4.2.17.25
0xC96 RIL_CRDT_SNQ_BLK.USEMANY_ANY RIL 4.2.17.7
0xC97 RIL_CRDT_SNQ_BLK.USEMANY_BYP RIL 4.2.17.7
0xC9B UNCORE_FREEZE System 4.2.20.4
0xC9oC DTLB_HPWREQ_BLK_MISS.SUCCEED MLDTLB 4.2.15.2
0xC9D DTLB_REF.NONSPEC MLDTLB 4.2.15.4
OxC9E DTLB_HPWREQ_SPEC_MISS MLDTLB 4.2.15.3
OxC9F DTLB_HPWREQ_BLK_MISS.COAL MLDTLB 4.2.15.2
OxCAO DTLB_HPWREQ_BLK_MISS.FAIL MLDTLB 4.2.15.2
OxCA1 CSPEC_LOAD.ANY Execution 4.2.3.5
OxCA2 CSPEC_LOAD.NAT Execution 4.2.35
OxCA3 DTLB_HPWHINT_BLK MLDTLB 4.2.15.1
OxCA4 DATA_REF.LOAD_UC FLD 4.2.12.1
OxCA5 DATA_REFR.STORE_UC FLD 4.2.12.1
OxCA6 DTLB_REF.ANY MLDTLB 4.2.15.4
OXCA7 MLD_ISSUE_SRC.ANY MLD 4.2.13.14
OxCAS8 MLD_ISSUE_SRC.BYPASS MLD 4.2.13.14
OxCA9 MLD_ISSUE_SRC.0ZQ MLD 4.2.13.14
OXCAA MLD_ISSUE_SRC.SMQ MLD 4.2.13.14
OxCAB MLD_ISSUE_SRC.FAB MLD 4.2.13.14
OxCAC MLD_ISSUE_SRC.SNOOP MLD 4.2.13.14
OxCAD MLD_REF.ANY MLD 4.2.13.23
OxCAE MLD_REFRHIT MLD 4.2.13.23
OxCAF MLD_RERMISS MLD 4.2.13.23
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0xCBO MLD_REF.PRIMARY MLD 4.2.13.23
0oxCB1 MLD_REF.SECONDARY MLD 4.2.13.23
0xCB2 MLD_REF.SECONDARY_DROP MLD 4.2.13.23
0xCB3 MLD_REFR.UC_WC_STORE MLD 4.2.13.23
oxCB4 MLD_LOAD.ANY MLD 4.2.13.15
0xCB5 MLD_LOAD.HIT MLD 4.2.13.15
0xCB6 MLD_LOAD.MISS MLD 4.2.13.15
OxCB7 MLD_LOAD.PRIMARY MLD 4.2.13.15
0xCB8 MLD_LOAD.SECONDARY MLD 4.2.13.15
0xCB9 MLD_SMQ_REF.ANY MLD 4.2.13.26
OxCBA MLD_SMQ_REFR.HIT MLD 4.2.13.26
0xCBB MLD_SMQ_REF.MISS MLD 4.2.13.26
0xCBC MLD_SMQ_REF.PRIMARY MLD 4.2.13.26
0xCBD MLD_SMQ_REF.SECONDARY MLD 4.2.13.26
OxCBE MLD_SMQ_REF.SECONDARY_DROP MLD 4.2.13.26
OxCBF MLD_FILL_MESI_STATE_PRIMARY.ANY MLD 4.2.13.8
0xCCO MLD_FILL_MESI_STATE_PRIMARY.M MLD 4.2.13.8
OxCC1 MLD_FILL_MESI_STATE_PRIMARY.E MLD 4.2.13.8
OoxCC2 MLD_FILL_MESI_STATE_PRIMARY.S MLD 4.2.13.8
O0xCC3 MLD_FILL_MESI_STATE_PRIMARY.I MLD 4.2.13.8
OxCC4 MLD_FILL_MESI_STATE_BUDDY.ANY MLD 4.2.13.7
0xCC5 MLD_FILL_MESI_STATE_BUDDY.E MLD 4.2.13.7
0xCC6 MLD_FILL_MESI_STATE_BUDDY.S MLD 4.2.13.7
OxCC7 MLD_FILL_MESI_STATE_BUDDY.I MLD 4.2.13.7
0xCC8 MLD_SNOOP_DEFER MLD 4.2.13.27
0xCC9 MLD_NOALLOC_FILL MLD 4.2.13.18
OXCCA MLD_NOALLOC_CASTOUT MLD 4.2.13.17
0oxCCB MLD_HINT_NOALLOC MLD 4.2.13.10
oxCcCcC MLD_HINT_NRU MLD 4.2.13.13
OxCCD MLD_HINT_NO_BUDDY MLD 4.2.13.11
OxCCE MLD_HINT_NO_MULTI_HWPREF MLD
OxCCF MLD_HINT_PREF_DROP MLD 4.2.13.12
OxCDO MLD_HINT_DEFER MLD 4.2.13.9
0xCD1 MLD_FAB_OVERFLOW MLD 4.2.13.6
0xCD2 MLD_OZQ_INSERT MLD 4.2.13.21
0OxCD3 MLD_BYPASS_ATTEMPT MLD 4.2.13.3
0xCD4 MLD_BYPASS MLD 4.2.13.2
0xCD5 MLD_0OZQ_PREEMPTED MLD 4.2.13.22
0OxCD6 MLD_BWMODE_CYC MLD 4.2.13.1
0xCD7 MLD_SMQ_PRIORITY MLD 4.2.13.25
0xCD8 MLD_CYC_STALL.ANY MLD 4.2.13.4
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0xCD9 MLD_CYC_STALL.RW_BANK MLD 4.2.13.4
OxCDA MLD_CYC_STALL.RAW MLD 4.2.13.4
0xCDB MLD_CYC_STALL.SEMAPHORE MLD 4.2.13.4
0OxCDC MLD_CYC_STALL.FILL_W MLD 4.2.13.4
OxCDD MLD_CYC_STALL.CRIT_BYP MLD 4.2.13.4
OxCDE MLD_CYC_STALL.WB_FIFO MLD 4.2.13.4
OxCDF MLD_CYC_STALL.HPW MLD 4.2.13.4
OxCEO MLD_CYC_STALL.TAG_ERR MLD 4.2.13.4
OxCE1 MLD_CYC_STALL.SPLIT_WW_BANK MLD 4.2.13.4
OxCE2 MLD_CYC_STALL.SPLIT_RR_BANK MLD 4.2.13.4
OxCE3 MLD_CYC_STALL.SPLIT_RW_BANK MLD 4.2.13.4
OxCE4 MLD_CYC_STALL.SPLIT_RAW MLD 4.2.13.4
OxCE5 MLD_CYC_STALL.SPLIT_OVERSUB MLD 4.2.13.4
OxCE®6 MLD_CYC_STALL.SPLIT_CRIT_BYP MLD 4.2.13.4
OxCE7 MLD_LOST_BW.ANY MLD 4.2.13.16
OxCE8 MLD_LOST_BW.OZQ_NOP MLD 4.2.13.16
OXCE9 MLD_LOST_BW.0ZQ_ NOP_ACQ MLD 4.2.13.16
OxCEA MLD_LOST_BW.O0ZQ_FAB_FULL MLD 4.2.13.16
OXCEB | MLD_LOST_BW.0ZQ SMQ_FULL MLD 4.2.13.16
OxCEC MLD_LOST_BW.OZQ_FAB_PREEMPT MLD 4.2.13.16
OXCED | MLD_LOST_BW.0ZQ_SMQ_PREEMPT MLD 4.2.13.16
OxCEE MLD_LOST_BW.OZQ_SNOOP_PREEMPT MLD 4.2.13.16
OxCEF MLD_LOST_BW.FAB_NOP MLD 4.2.13.16
OXCFO MLD_LOST_BW.SMQ_NOP MLD 4.2.13.16
OxCF1 MLD_LOST_BW.SPLIT_BUBBLE MLD 4.2.13.16
OxCF2 MLD_LOST_BW.NOP_STALL MLD 4.2.13.16
OXCF3 MLD_LOST_BW.STALL MLD 4.2.13.16
OxCF4 MLD_LOST_BW.NOP MLD 4.2.13.16
OxCF5 MLD_OZQ_COUNT.LSB MLD 4.2.13.20
OxCF6 MLD_0OZQ_COUNT.MSB MLD 4.2.13.20
OxCF7 MLD_FAB_COUNT.LSB MLD 4.2.13.5
OxCF8 MLD_FAB_COUNT.MSB MLD 4.2.13.5
OxCF9 MLD_SMQ_COUNT.LSB MLD 4.2.13.24
OxCFA MLD_SMQ_COUNT.MSB MLD 4.2.13.24
OxCFB MLD_WLB_COUNT.LSB MLD 4.2.13.29
OXCFC MLD_WLB_COUNT.MSB MLD 4.2.13.29
OxCFD MLD_WCB_CREDIT MLD 4.2.13.28
OXCFE MLD_OZDATA_COUNT.LSB MLD 4.2.13.19
OXCFF MLD_OZDATA_COUNT.MSB MLD 4.2.13.19
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Performance Monitor Events Ordered by Event Name

Table 4-2 presents all of the performance monitors provided in the processor ordered

by their event name.

All Performance Monitors Ordered by Name (Sheet 1 of 20)

Symbol Name %\ge;et Area Section
ALAT_ENTRY_REPLACED 0x152 Execution 4.2.3.1
ALAT_STORE_HIT 0x151 Execution 4.2.3.2
BR_BE_PRED_DETAIL.ANY 0x807 Branch 4.2.6.1
BR_BE_PRED_DETAIL.ANY_RETIRED 0x805 Branch 4.2.6.1
BR_BE_PRED_DETAIL.OTHER 0x804 Branch 4.2.6.1
BR_BE_PRED_DETAIL.PFS 0x803 Branch 4.2.6.1
BR_BE_PRED_DETAIL.ROT 0x802 Branch 4.2.6.1
BR_BE_PRED_DETAIL.STG 0x801 Branch 4.2.6.1
BR_BE_PRED_DETAIL.UNRETIRED 0x806 Branch 4.2.6.1
BR_ENC_PRED_DETAIL.ENC_ANY_PRED 0x830 Branch 4.2.6.2
BR_ENC_PRED_DETAIL.ENC_CORR_PRED 0x831 Branch 4.2.6.2
BR_ENC_PRED_DETAIL.ENC_OVRSUB_ANY_PRED 0x838 Branch 4.2.6.2
BR_ENC_PRED_DETAIL.ENC_OVRSUB_CORR_PRED 0x839 Branch 4.2.6.2
BR_ENC_PRED_DETAIL.ENC_OVRSUB_WRONG_PATH Ox83A Branch 4.2.6.2
BR_ENC_PRED_DETAIL.ENC_OVRSUB_WRONG_TARGET 0x83B Branch 4.2.6.2
BR_ENC_PRED_DETAIL.ENC_WRONG_PATH 0x832 Branch 4.2.6.2
BR_ENC_PRED_DETAIL.ENC_WRONG_TARGET 0x833 Branch 4.2.6.2
BR_ENC_PRED_DETAIL.OVRSUB_ANY_PRED 0x834 Branch 4.2.6.2
BR_ENC_PRED_DETAIL.OVRSUB_CORR_PRED 0x835 Branch 4.2.6.2
BR_ENC_PRED_DETAIL.OVRSUB_WRONG_PATH 0x836 Branch 4.2.6.2
BR_ENC_PRED_DETAIL.OVRSUB_WRONG_TARGET 0x837 Branch 4.2.6.2
BR_PATH_PRED.ANY_MISPRED_NOT_TAKEN 0x808 Branch 4.2.6.3
BR_PATH_PRED.ANY_MISPRED_TAKEN 0x809 Branch 4.2.6.3
BR_PATH_PRED.ANY_OKPRED_NOT_TAKEN Ox80A Branch 4.2.6.3
BR_PATH_PRED.ANY_OKPRED_TAKEN 0x80B Branch 4.2.6.3
BR_PATH_PRED.IPREL_MISPRED_NOT_TAKEN 0x80C Branch 4.2.6.3
BR_PATH_PRED.IPREL_MISPRED_TAKEN 0x80D Branch 4.2.6.3
BR_PATH_PRED.IPREL_OKPRED_NOT_TAKEN Ox80E Branch 4.2.6.3
BR_PATH_PRED.IPREL_OKPRED_TAKEN Ox80F Branch 4.2.6.3
BR_PATH_PRED.NON_RETIND_MISPRED_NOT_TAKEN 0x814 Branch 4.2.6.3
BR_PATH_PRED.NON_RETIND_MISPRED_TAKEN 0x815 Branch 4.2.6.3
BR_PATH_PRED.NON_RETIND_OKPRED_NOT_TAKEN 0x816 Branch 4.2.6.3
BR_PATH_PRED.NON_RETIND_OKPRED_TAKEN 0x817 Branch 4.2.6.3
BR_PATH_PRED.RETURN_MISPRED_NOT_TAKEN 0x810 Branch 4.2.6.3
BR_PATH_PRED.RETURN_MISPRED_TAKEN 0x811 Branch 4.2.6.3
BR_PATH_PRED.RETURN_OKPRED_NOT_TAKEN 0x812 Branch 4.2.6.3
BR_PATH_PRED.RETURN_OKPRED_TAKEN 0x813 Branch 4.2.6.3
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Symbol Name %\:)%net Area Section
BR_PRED_DETAIL.ANY_ANY_PRED 0x820 Branch 4.2.6.4
BR_PRED_DETAIL.ANY_CORR_PRED 0x821 Branch 4.2.6.4
BR_PRED_DETAIL.ANY_WRONG_PATH 0x822 Branch 4.2.6.4
BR_PRED_DETAIL.ANY_WRONG_TARGET 0x823 Branch 4.2.6.4
BR_PRED_DETAIL.IPREL_ANY_PRED 0x824 Branch 4.2.6.4
BR_PRED_DETAIL.IPREL_CORR_PRED 0x825 Branch 4.2.6.4
BR_PRED_DETAIL.IPREL_WRONG_PATH 0x826 Branch 4.2.6.4
BR_PRED_DETAIL.IPREL_WRONG_TARGET 0x827 Branch 4.2.6.4
BR_PRED_DETAIL.NON_RETIND_ANY_PRED 0x82C Branch 4.2.6.4
BR_PRED_DETAIL.NON_RETIND_CORR_PRED 0x82D Branch 4.2.6.4
BR_PRED_DETAIL.NON_RETIND_WRONG_PATH Ox82E Branch 4.2.6.4
BR_PRED_DETAIL.NON_RETIND_WRONG_TARGET Ox82F Branch 4.2.6.4
BR_PRED_DETAIL.RETURN_ANY_PRED 0x828 Branch 4.2.6.4
BR_PRED_DETAIL.RETURN_CORR_PRED 0x829 Branch 4.2.6.4
BR_PRED_DETAIL.RETURN_WRONG_PATH Ox82A Branch 4.2.6.4
BR_PRED_DETAIL.RETURN_WRONG_TARGET 0x82B Branch 4.2.6.4
BR_PRED_UNKNOWN.ANY 0x818 Branch 4.2.6.5
BR_PRED_UNKNOWN.ANY_TAKEN 0x819 Branch 4.2.6.5
BR_PRED_UNKNOWN.IPREL Ox81A Branch 4.2.6.5
BR_PRED_UNKNOWN.IPREL_TAKEN 0x81B Branch 4.2.6.5
BR_PRED_UNKNOWN.NON_RETIND Ox81E Branch 4.2.6.5
BR_PRED_UNKNOWN.NON_RETIND_TAKEN Ox81F Branch 4.2.6.5
BR_PRED_UNKNOWN.RETURN 0x81C Branch 4.2.6.5
BR_PRED_UNKNOWN.RETURN_TAKEN 0x81D Branch 4.2.6.5
CPU_CPL_CHANGE.ANY Ox01A System 4.2.20.1
CPU_CPL_CHANGE.FROMO 0x01B System 4.2.20.1
CPU_CPL_CHANGE.FROM1 0x01C System 4.2.20.1
CPU_CPL_CHANGE.FROM2 0x01D System 4.2.20.1
CPU_CPL_CHANGE.FROM3 OxO01E System 4.2.20.1
CPU_OP_CYCLES 0x002 Basic 4.2.1.1
CPU_OP_CYCLES.HALTED 0x003 Basic 4.2.1.1
CPU_OP_CYCLES.TAGGED 0x004 Basic 4.2.1.1
CPU_REF_CYCLES 0x001 Basic 4.2.1.2
CSPEC_CHKS_FAIL.ANY 0x015 Execution 4.2.3.4
CSPEC_CHKS_FAIL.FP 0x017 Execution 4.2.3.4
CSPEC_CHKS_FAIL.INT 0x016 Execution 4.2.3.4
CSPEC_CHKS.ANY 0x014 Execution 4.2.3.3
CSPEC_LOAD.ANY OxCA1 Execution 4.2.3.5
CSPEC_LOAD.NAT OxCA2 Execution 4.2.3.5
CYC_BE_BUBBLE.ANY 0x024 Stall 4.2.4.1
CYC_BE_DET_REPLAY.ANY O0x04A Stall 4.2.4.2
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Symbol Name Ié\:)%rét Area Section
CYC_BE_DET_REPLAY.DCS_HZRD 0x04C Stall 4.2.4.2
CYC_BE_DET_REPLAY.FLUSH_STORE 0x050 Stall 4.2.4.2
CYC_BE_DET_REPLAY.GR_LOAD 0x04B Stall 4.2.4.2
CYC_BE_DET_REPLAY.HPW_HZRD 0x051 Stall 4.2.4.2
CYC_BE_DET_REPLAY.LOAD_ACQ 0x04F Stall 4.2.4.2
CYC_BE_DET_REPLAY.LOAD_AFTER_WRITE Ox04E Stall 4.2.4.2
CYC_BE_DET_REPLAY.MT1 0x054 Stall 4.2.4.2
CYC_BE_DET_REPLAY.STORE_VS_STORE 0x04D Stall 4.2.4.2
CYC_BE_DET_REPLAY.WRITE_HIT_VS_FILL 0x052 Stall 4.2.4.2
CYC_BE_DET_REPLAY.WRITE_MISS_VS_FILL 0x053 Stall 4.2.4.2
CYC_BE_EXE_REPLAY.ANY Ox03A Stall 4.2.4.3
CYC_BE_EXE_REPLAY.ARCR 0x048 Stall 4.2.4.3
CYC_BE_EXE_REPLAY.FCMP 0x042 Stall 4.2.4.3
CYC_BE_EXE_REPLAY.FPSR 0x045 Stall 4.2.4.3
CYC_BE_EXE_REPLAY.FR_FR 0x040 Stall 4.2.4.3
CYC_BE_EXE_REPLAY.FR_LOAD_RAW 0x03C Stall 4.2.4.3
CYC_BE_EXE_REPLAY.FR_LOAD_WAW Ox03E Stall 4.2.4.3
CYC_BE_EXE_REPLAY.GR_GR 0x03F Stall 4.2.4.3
CYC_BE_EXE_REPLAY.GR_LOAD_RAW 0x03B Stall 4.2.4.3
CYC_BE_EXE_REPLAY.GR_LOAD_WAW 0x03D Stall 4.2.4.3
CYC_BE_EXE_REPLAY.MT1_HIGH 0x041 Stall 4.2.4.3
CYC_BE_EXE_REPLAY.MT1_LOW 0x049 Stall 4.2.4.3
CYC_BE_EXE_REPLAY.NOTN 0x044 Stall 4.2.4.3
CYC_BE_EXE_REPLAY.PRED 0x043 Stall 4.2.4.3
CYC_BE_EXE_REPLAY.REL 0x047 Stall 4.2.4.3
CYC_BE_EXE_REPLAY.SRLZ 0x046 Stall 4.2.4.3
CYC_BE_IBD_STALL.ACQ Ox02E Stall 4.2.4.4
CYC_BE_IBD_STALL.ANY 0x025 Stall 4.2.4.4
CYC_BE_IBD_STALL.DEBUG 0x039 Stall 4.2.4.4
CYC_BE_IBD_STALL.FEBUB 0x038 Stall 4.2.4.4
CYC_BE_IBD_STALL.FLD_DMND 0x035 Stall 4.2.4.4
CYC_BE_IBD_STALL.FR_LOAD 0x030 Stall 4.2.4.4
CYC_BE_IBD_STALL.FTOF 0x034 Stall 4.2.4.4
CYC_BE_IBD_STALL.GR_LOAD Ox02F Stall 4.2.4.4
CYC_BE_IBD_STALL.HPW 0x02C Stall 4.2.4.4
CYC_BE_IBD_STALL.MTOM 0x033 Stall 4.2.4.4
CYC_BE_IBD_STALL.OZQFULL 0x02D Stall 4.2.4.4
CYC_BE_IBD_STALL.QFULL 0x037 Stall 4.2.4.4
CYC_BE_IBD_STALL.REL 0x032 Stall 4.2.4.4
CYC_BE_IBD_STALL.RSE_ANY 0x026 Stall 4.2.4.4
CYC_BE_IBD_STALL.RSE_CFLE 0ox027 Stall 4.2.4.4
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CYC_BE_IBD_STALL.RSE_LOAD 0x029 Stall 4.2.4.4
CYC_BE_IBD_STALL.RSE_ST 0x028 Stall 4.2.4.4
CYC_BE_IBD_STALL.RSE_WAIT O0x02A Stall 4.2.4.4
CYC_BE_IBD_STALL.SRLZ 0x031 Stall 4.2.4.4
CYC_BE_IBD_STALL.THRSW 0x02B Stall 4.2.4.4
CYC_BE_IBD_STALL.WB2_TRAP 0x036 Stall 4.2.4.4
CYC_BE_NO_BUBBLE 0x023 Stall 4.2.4.5
CYC_BE_WB2_FLUSH.ANY 0x065 Stall 4.2.4.6
CYC_BE_WB2_FLUSH.BRU 0x067 Stall 4.2.4.6
CYC_BE_WB2_FLUSH.XPN 0x066 Stall 4.2.4.6
CYC_BE_WB2_REPLAY.ALLOC_PEC 0x058 Stall 4.2.4.7
CYC_BE_WB2_REPLAY.ANY 0x055 Stall 4.2.4.7
CYC_BE_WB2_REPLAY.BLK_HPW 0x05D Stall 4.2.4.7
CYC_BE_WB2_REPLAY.DAHR_HZRD 0x061 Stall 4.2.4.7
CYC_BE_WB2_REPLAY.FP_DEN 0x05B | Stall 4.2.4.7
CYC_BE_WB2_REPLAY.FP_SIR 0x05C Stall 4.2.4.7
CYC_BE_WB2_REPLAY.LDC 0x056 Stall 4.2.4.7
CYC_BE_WB2_REPLAY.LOAD_ACQ 0x062 Stall 4.2.4.7
CYC_BE_WB2_REPLAY.MOV_PSR_UM 0x059 Stall 4.2.4.7
CYC_BE_WB2_REPLAY.MT1 0x063 Stall 4.2.4.7
CYC_BE_WB2_REPLAY.NAT_HZRD 0x060 Stall 4.2.4.7
CYC_BE_WB2_REPLAY.OZQ FULL OXO05E Stall 4.2.4.7
CYC_BE_WB2_REPLAY.PAUSE 0x057 Stall 4.2.4.7
CYC_BE_WB2_REPLAY.SER 0x064 Stall 4.2.4.7
CYC_BE_WB2_REPLAY.STORE_ALIAS OxO05F Stall 4.2.4.7
CYC_BE_WB2_REPLAY.VIRT_INT O0x05A Stall 4.2.4.7
CYC_FE_BUBBLE.ANY Ox8A3 Stall 4.2.5.1
CYC_FE_FET_REPLAY.ANY Ox8AB Stall 4.2.5.2
CYC_FE_FET_REPLAY.BRQ_FULL Ox8AD | Stall 4.2.5.2
CYC_FE_FET_REPLAY.BRQ_WAIT OX8AE Stall 4.2.5.2
CYC_FE_FET_REPLAY.BR_INIT Ox8AC Stall 4.2.5.2
CYC_FE_FET_REPLAY.BR_INTRLCK Ox8AF Stall 4.2.5.2
CYC_FE_FET_REPLAY.MT1 0x8B1 Stall 4.2.5.2
CYC_FE_FET_REPLAY.RAB_FULL 0x8B0O Stall 4.2.5.2
CYC_FE_FET_STALL.ANY 0x8B2 Stall 4.2.5.3
CYC_FE_FET_STALL.FLITLB_MISS 0x8B5 Stall 4.2.5.3
CYC_FE_FET_STALL.FLI_MISS 0x8B4 Stall 4.2.5.3
CYC_FE_FET_STALL.IBQ_FULL 0x8B3 Stall 4.2.5.3
CYC_FE_FET_STALL.MT1 0x8B6 Stall 4.2.5.3
CYC_FE_FWPROG Ox8A1 Multithreading 4.2.21.1
CYC_FE_NO_BUBBLE Ox8A2 Stall 4.2.5.4

156 Intel® Itanium® Processor 9500 Series

Reference Manual for Software Development and Optimization Guide




Core Performance Monitor Events

Table 4-2. All Performance Monitors Ordered by Name (Sheet 5 of 20)

intel.

Intel® Itanium® Processor 9500 Series

Reference Manual for Software Development and Optimization Guide

Symbol Name Ié\g?et Area Section

CYC_FE_RESTEER.ANY Ox8A4 Stall 4.2.55

CYC_FE_RESTEER.BE_FLUSH Ox8AA Stall 4.2.55

CYC_FE_RESTEER.BR_RETIND Ox8A6 Stall 4.2.5.5

CYC_FE_RESTEER.IPREL Ox8A5 Stall 4.2.55

CYC_FE_RESTEER.NON_RETIND Ox8A7 Stall 4.2.55

CYC_FE_RESTEER.SEQ_BR Ox8A8 Stall 4.2.5.5

CYC_FE_RESTEER.TSWITCH Ox8A9 Stall 4.2.55

DAHS_UNDERFLOW 0x0C9 DPF 4.2.16.1
DATA_REF.ANY 0x0DD FLD 4.2.12.1
DATA_REF.HW_PREF OxOE6 FLD 4.2.12.1
DATA_REF.LFETCH Ox0E4 FLD 4.2.12.1
DATA_REF.LOAD_ANY OxOE8 FLD 4.2.12.1
DATA_REF.LOAD_FP OxODF FLD 4.2.12.1
DATA_REF.LOAD_HPW OxOE7 FLD 4.2.12.1
DATA_REF.LOAD_INT OxODE FLD 4.2.12.1
DATA_REF.LOAD_RSE OxOEO FLD 4.2.12.1
DATA_REF.LOAD_UC OxCA4 FLD 4.2.12.1
DATA_REF.SEMAPHORE OxOE5 FLD 4.2.12.1
DATA_REFR.STORE_ANY OxOE9 FLD 4.2.12.1
DATA_REF.STORE_FP OxOE2 FLD 4.2.12.1
DATA_REF.STORE_INT OxOE1 FLD 4.2.12.1
DATA_REF.STORE_RSE OxOE3 FLD 4.2.12.1
DATA_REFR.STORE_UC OxCA5 FLD 4.2.12.1
DPFQ_DEQ_PREEMPT_REJECT.ANY 0x0C5 DPF 4.2.16.4
DPFQ_DEQ_PREEMPT_REJECT.LFETCH 0x0C6 DPF 4.2.16.4
DPFQ_DEQ_PREEMPT_REJECT.LFETCH_COUNT 0x0C7 DPF 4.2.16.4
DPFQ_DEQ_PREEMPT_REJECT.MOV_BSPST 0x0C8 DPF 4.2.16.4
DPFQ_DEQ_PREEMPT.ANY 0x0B1 DPF 4.2.16.3
DPFQ_DEQ_PREEMPT.INST_ANY 0x0B2 DPF 4.2.16.3
DPFQ_DEQ_PREEMPT.LFETCH 0x0B3 DPF 4.2.16.3
DPFQ_DEQ_PREEMPT.LFETCH_COUNT 0x0B4 DPF 4.2.16.3
DPFQ_DEQ_PREEMPT.MOV_BSPST 0x0B5 DPF 4.2.16.3
DPFQ_DEQ_PREEMPT.TIMEOUT 0x0B6 DPF 4.2.16.3
DPFQ_DEQ_REJECT.ANY 0x0B7 DPF 4.2.16.5
DPFQ_DEQ_REJECT.FLD_ANY OXOBF DPF 4.2.16.5
DPFQ_DEQ_REJECT.FLD_BIDI 0x0C3 DPF 4.2.16.5
DPFQ_DEQ_REJECT.FLD_BWD 0x0C2 DPF 4.2.16.5
DPFQ_DEQ_REJECT.FLD_FWD 0x0C1 DPF 4.2.16.5
DPFQ_DEQ_REJECT.FLD_TARGET 0x0CO DPF 4.2.16.5
DPFQ_DEQ_REJECT.INST_ANY 0x0B8 DPF 4.2.16.5
DPFQ_DEQ_REJECT.LFETCH 0x0B9 DPF 4.2.16.5
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DPFQ_DEQ_REJECT.LFETCH_COUNT OxOBA DPF 4.2.16.5
DPFQ_DEQ_REJECT.MLD 0ox0C4 DPF 4.2.16.5
DPFQ_DEQ_REJECT.MOV_BSPST 0x0BB DPF 4.2.16.5
DPFQ_DEQ_REJECT.RSE_ANY OXOBC | DPF 4.2.16.5
DPFQ_DEQ_REJECT.RSE_LOAD 0x0BD DPF 4.2.16.5
DPFQ_DEQ_REJECT.RSE_STORE OXOBE DPF 4.2.16.5
DPFQ_DEQ.ANY Ox0A3 DPF 4.2.16.2
DPFQ_DEQ.FLD_ANY OX0AB | DPF 4.2.16.2
DPFQ_DEQ.FLD_BIDI OXOAF DPF 4.2.16.2
DPFQ_DEQ.FLD_BWD OXOAE DPF 4.2.16.2
DPFQ_DEQ.FLD_FWD OXOAD | DPF 4.2.16.2
DPFQ_DEQ.FLD_TARGET Ox0AC DPF 4.2.16.2
DPFQ_DEQ.INST_ANY O0x0A4 DPF 4.2.16.2
DPFQ_DEQ.LFETCH O0x0A5 DPF 4.2.16.2
DPFQ_DEQ.LFETCH_COUNT O0x0A6 DPF 4.2.16.2
DPFQ_DEQ.MLD 0x0BO DPF 4.2.16.2
DPFQ_DEQ.MOV_BSPST Ox0A7 DPF 4.2.16.2
DPFQ_DEQ.RSE_ANY Ox0A8 DPF 4.2.16.2
DPFQ_DEQ.RSE_LOAD O0x0A9 DPF 4.2.16.2
DPFQ_DEQ.RSE_STORE Ox0AA DPF 4.2.16.2
DPFQ_ENQ_OVERFLOW.ANY 0x095 DPF 4.2.16.7
DPFQ_ENQ_OVERFLOW.FLD_ANY 0x09D DPF 4.2.16.7
DPFQ_ENQ_OVERFLOW.FLD_BIDI O0x0A1 DPF 4.2.16.7
DPFQ_ENQ_OVERFLOW.FLD_BWD 0X0AO0 DPF 4.2.16.7
DPFQ_ENQ_OVERFLOW.FLD_FWD Ox09F DPF 4.2.16.7
DPFQ_ENQ_OVERFLOW.FLD_TARGET O0x09E DPF 4.2.16.7
DPFQ_ENQ_OVERFLOW.INST_ANY 0x096 DPF 4.2.16.7
DPFQ_ENQ_OVERFLOW.LFETCH 0x097 DPF 4.2.16.7
DPFQ_ENQ_OVERFLOW.LFETCH_COUNT 0x098 DPF 4.2.16.7
DPFQ_ENQ_OVERFLOW.MLD Ox0A2 DPF 4.2.16.7
DPFQ_ENQ_OVERFLOW.MOV_BSPST 0x099 DPF 4.2.16.7
DPFQ_ENQ_OVERFLOW.RSE_ANY O0x09A DPF 4.2.16.7
DPFQ_ENQ_OVERFLOW.RSE_LOAD 0x09B DPF 4.2.16.7
DPFQ_ENQ_OVERFLOW.RSE_STORE 0x09C DPF 4.2.16.7
DPFQ_ENQ.ANY 0x087 DPF 4.2.16.6
DPFQ_ENQ.FLD_ANY Ox08F DPF 4.2.16.6
DPFQ_ENQ.FLD_BIDI 0x093 DPF 4.2.16.6
DPFQ_ENQ.FLD_BWD 0x092 DPF 4.2.16.6
DPFQ_ENQ.FLD_FWD 0x091 DPF 4.2.16.6
DPFQ_ENQ.FLD_TARGET 0x090 DPF 4.2.16.6
DPFQ_ENQ.INST_ANY 0x088 DPF 4.2.16.6
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DPFQ_ENQ.LFETCH 0x089 DPF 4.2.16.6
DPFQ_ENQ.LFETCH_COUNT Ox08A DPF 4.2.16.6
DPFQ_ENQ.MLD 0x094 DPF 4.2.16.6
DPFQ_ENQ.MOV_BSPST 0x08B DPF 4.2.16.6
DPFQ_ENQ.RSE_ANY 0x08C DPF 4.2.16.6
DPFQ_ENQ.RSE_LOAD 0x08D DPF 4.2.16.6
DPFQ_ENQ.RSE_STORE Ox08E DPF 4.2.16.6
DSPEC_CHKA_LDC_FAIL.ANY 0x011 Execution 4.2.3.7
DSPEC_CHKA_LDC_FAIL.FP 0x013 Execution 4.2.3.7
DSPEC_CHKA_LDC_FAIL.INT 0x012 Execution 4.2.3.7
DSPEC_CHKA_LDC.ANY OxO00F Execution 4.2.3.6
DSPEC_LDC.HIT 0x010 Execution 4.2.3.8
DTLB_HPWHINT_BLK OxCA3 MLDTLB 4.2.15.1
DTLB_HPWREQ_BLK_MISS.SUCCEED 0xC9oC MLDTLB 4.2.15.2
DTLB_HPWREQ_BLK_MISS.COAL OxC9F MLDTLB 4.2.15.2
DTLB_HPWREQ_BLK_MISS.FAIL OxCAO MLDTLB 4.2.15.2
DTLB_HPWREQ_SPEC_MISS OxC9E MLDTLB 4.2.15.3
DTLB_REF.ANY O0xCA6 MLDTLB 4.2.15.4
DTLB_REF.NONSPEC 0xC9D MLDTLB 4.2.15.4
EAR_EVENT_DATA 0x019 Execution 4.2.3.9
EAR_EVENT_ETB 0x018 Execution 4.2.3.10
EAR_EVENT_INST 0x871 Execution 4.2.3.11
FE_OP_CYCLES 0x875 Basic 4.2.1.3
FE_RESTEER.OB_IPREL 0x8B9 Stall 4.2.5.6
FE_RESTEER.1B_BR_RETIND 0x8BC Stall 4.2.5.6
FE_RESTEER.1B_IPREL Ox8BA Stall 4.2.5.6
FE_RESTEER.1B_SEQ_BR Ox8BF Stall 4.2.5.6
FE_RESTEER.3B_BR_RETIND 0x8BD Stall 4.2.5.6
FE_RESTEER.3B_IPREL 0x8BB Stall 4.2.5.6
FE_RESTEER.3B_MT 0x8C1 Stall 4.2.5.6
FE_RESTEER.3B_NON_RETIND Ox8BE Stall 4.2.5.6
FE_RESTEER.3B_SEQ_BR 0x8C0O Stall 4.2.5.6
FE_RESTEER.4B_MT 0x8C2 Stall 4.2.5.6
FE_RESTEER.ANY 0x8B7 Stall 4.2.5.6
FE_RESTEER.BE_FLUSH 0x8C3 Stall 4.2.5.6
FE_RESTEER.FET_REPLAY 0x8B8 Stall 4.2.5.6
FLDTLB_INS_REQ.CANCEL 0x109 FLDTLB 4.2.14.1
FLDTLB_INS_REQ.COMPLETE 0x106 FLDTLB 4.2.14.1
FLDTLB_INS_REQ.NON_RETIRED 0x108 FLDTLB 4.2.14.1
FLDTLB_INS_REQ.RETIRED 0x107 FLDTLB 4.2.14.1
FLDTLB_LOAD_MISS.ANY 0x103 FLDTLB 4.2.14.2
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FLDTLB_LOAD_MISS.INT 0x104 FLDTLB 4.2.14.2
FLDTLB_LOAD_MISS.RSE 0x105 FLDTLB 4.2.14.2
FLD_FILL 0x101 FLD 4.2.12.1
FLD_FILL_CANCEL.ANY OxOFD FLD 4.2.12.2
FLD_FILL_CANCEL.INFAB OXOFF FLD 4.2.12.2
FLD_FILL_CANCEL.MLD OxOFE FLD 4.2.12.2
FLD_FILL_CANCEL.POSTFAB 0x100 FLD 4.2.12.2
FLD_FILL_LRU 0x102 FLD 4.2.12.3
FLD_FILL_REQ.ANY OxOF8 FLD 4.2.12.4
FLD_FILL_REQ.HW_PREF OxOFC FLD 4.2.12.4
FLD_FILL_REQ.LFETCH OxOFB FLD 4.2.12.4
FLD_FILL_REQ.LOAD_INT OxO0F9 FLD 4.2.12.4
FLD_FILL_REQ.LOAD_RSE OxOFA FLD 4.2.12.4
FLD_HINT_NOALLOC OxOF6 FLD 4.2.12.5
FLD_HINT_NO_MULTI_HWPREF 0x0D8 FLD 4.2.12.6
FLD_HIT.ANY OxOEF FLD 4.2.12.7
FLD_HWPREF_INS.ACQ_PEND 0x0D3 DPF 4.2.16.8
FLD_HWPREF_INS.ANY 0x0CB DPF 4.2.16.8
FLD_HWPREF_INS.CANCEL_FILL 0ox0CC DPF 4.2.16.8
FLD_HWPREF_INS.DTLB_MISS 0x0CD DPF 4.2.16.8
FLD_HWPREF_INS.DTLB_MISS_LFETCH 0x0D5 DPF 4.2.16.8
FLD_HWPREF_INS.FLDTLB_MISS Ox0CE DPF 4.2.16.8
FLD_HWPREF_INS.FLDTLB_MISS_LFETCH 0x0D6 DPF 4.2.16.8
FLD_HWPREF_INS.FLUSH_STORE 0x0D2 DPF 4.2.16.8
FLD_HWPREF_INS.NEIGHBOR OxOCF DPF 4.2.16.8
FLD_HWPREF_INS.OZQ_FULL 0x0D1 DPF 4.2.16.8
FLD_HWPREF_INS.OZQ_FULL_LFETCH 0x0D7 DPF 4.2.16.8
FLD_HWPREF_INS.REL_OP 0x0D4 DPF 4.2.16.8
FLD_HWPREF_INS.STORE_ALIAS 0x0DO0 DPF 4.2.16.8
FLD_LINE_DEMOTE OxOF7 FLD 4.2.12.8
FLD_LOAD_MISS.ANY OxOEC FLD 4.2.12.10
FLD_LOAD_MISS.INT OxOED FLD 4.2.12.10
FLD_LOAD_MISS.RSE OxOEE FLD 4.2.12.10
FLD_LOAD.ANY OxOEA FLD 4.2.12.9
FLD_LOAD.INT OxO0EB FLD 4.2.12.9
FLD_SPEC_INVAL.ANY [0)(0]30] FLD 4.2.12.11
FLD_SPEC_INVAL.FLUSH_STORE OxOF2 FLD 4.2.12.11
FLD_SPEC_INVAL.INST OxOF1 FLD 4.2.12.11
FLD_SPEC_INVAL.SNOOP OxO0F3 FLD 4.2.12.11
FLITLB_INSERT_HPW Ox86F FLITLB 4.2.10.1
FLITLB_MISS 0x86D FLITLB 4.2.10.2
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FLI_FETCH_JIT_HIT 0x86B FLI 4.2.8.1
FLI_FETCH_RAB_HIT.DMND 0x869 FLI 4.2.8.2
FLI_FETCH_RAB_HIT.PREF Ox86A FLI 4.2.8.2
FLI_FILL 0x85C FLI 4.2.8.3
FLI_INST_INSERT_RAB 0x872 FLI 4.2.8.4
FLI_PREF_STALL.ANY 0x861 FLI 4.2.8.5
FLI_PREF_STALL.FLOW 0x862 FLI 4.2.8.5
FLI_PURGE 0x865 FLI 4.2.8.6
FLI_PVAB_OVERFLOW 0x86C FLI 4.2.8.7
FLI_RAB_ALMOST_FULL 0x868 FLI 4.2.8.8
FLI_RAB_FULL 0x867 FLI 4.2.8.9
FLI_READ_MISS.ANY Ox85A FLI 4.2.8.11
FLI_READ_MISS.DMND 0x85D FLI 4.2.8.11
FLI_READ_MISS.PREF Ox85F FLI 4.2.8.11
FLI_READ.ANY 0x859 FLI 4.2.8.10
FLI_READ.DMND 0x85B FLI 4.2.8.10
FLI_READ.PREF Ox85E FLI 4.2.8.10
FLI_READ.SNOOP 0x863 FLI 4.2.8.10
FLI_READ.SNOOP_HIT 0x864 FLI 4.2.8.10
FLI_STEPPING 0x873 FLI 4.2.8.12
FLI_STREAM_PREF 0x866 FLI 4.2.8.13
FP_DENORMAL 0x856 Execution 4.2.8.12
FP_FALSE_SIR 0x854 Execution 4.2.8.13
FP_FCHKF_FAIL 0x853 Execution 4.2.3.14
FP_FLOP 0x00C Execution 4.2.3.15
FP_FLUSH_TO_ZERO.FTZ_POSS 0x858 Execution 4.2.3.16
FP_FLUSH_TO_ZERO.FTZ_REAL 0x857 Execution 4.2.3.16
FP_TRUE_SIR 0x855 Execution 4.2.3.17
1A64_INST_RETIRED 0x005 Basic 4.2.1.4
IBL_ISSUE_LOST_BW.9PLUS3 0x086 Dispersal 4221
IBL_ISSUE_LOST_BW.ANY Ox07A Dispersal 4.2.2.1
IBL_ISSUE_LOST_BW.ASYM_I 0x07D | Dispersal 4.2.2.1
IBL_ISSUE_LOST_BW.ASYM_M OX07E Dispersal 4221
IBL_ISSUE_LOST_BW.DROOP 0ox07C Dispersal 4.2.2.1
IBL_ISSUE_LOST_BW.FLD_DMND_MO Ox07F Dispersal 4.2.2.1
IBL_ISSUE_LOST_BW.FLD_DMND_M1 0x080 Dispersal 4221
IBL_ISSUE_LOST_BW.OVRSUB_A 0x081 Dispersal 4.2.2.1
IBL_ISSUE_LOST_BW.OVRSUB_F 0x082 Dispersal 4.2.2.1
IBL_ISSUE_LOST_BW.OVRSUB_I 0x083 Dispersal 4221
IBL_ISSUE_LOST_BW.OVRSUB_M 0x084 Dispersal 4.2.2.1
IBL_ISSUE_LOST_BW.POWER ox07B Dispersal 4.2.2.1
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IBL_ISSUE_LOST_BW.STRUCT 0x085 Dispersal 4.2.2.1
IBL_ISSUE_STOP.9PLUS3 0x079 Dispersal 4.2.2.3
IBL_ISSUE_STOP.ASYM_I Ox06F Dispersal 4.2.2.3
IBL_ISSUE_STOP.ASYM_M 0x070 Dispersal 4.2.2.3
IBL_ISSUE_STOP.BUNDLE 0x078 Dispersal 4.2.2.3
IBL_ISSUE_STOP.DROOP Ox06E Dispersal 4.2.2.3
IBL_ISSUE_STOP.EXPLICIT 0x06C Dispersal 4.2.2.3
IBL_ISSUE_STOP.FLD_DMND_MO 0x071 Dispersal 4.2.2.3
IBL_ISSUE_STOP.FLD_DMND_M1 0x072 Dispersal 4.2.2.3
IBL_ISSUE_STOP.NONE Ox06A Dispersal 4.2.2.3
IBL_ISSUE_STOP.OVRSUB_A 0x075 Dispersal 4.2.2.3
IBL_ISSUE_STOP.OVRSUB_F 0x076 Dispersal 4.2.2.3
IBL_ISSUE_STOP.OVRSUB_I 0x074 Dispersal 4.2.2.3
IBL_ISSUE_STOP.OVRSUB_M 0x073 Dispersal 4.2.2.3
IBL_ISSUE_STOP.POWER 0x06D Dispersal 4.2.2.3
IBL_ISSUE_STOP.REPLAY 0x06B Dispersal 4.2.2.3
IBL_ISSUE_STOP.STRUCT 0x077 Dispersal 4.2.2.3
IBL_ISSUE.ANY 0x068 Dispersal 4.2.2.2
IBL_ISSUE.M_PIPE 0x069 Dispersal 4.2.2.2
INTERRUPT_EVENT.MASKED Ox01F System 4.2.20.2
INTERRUPT_EVENT.UNMASKED 0x020 System 4.2.20.2
LLC_REF_HIT.ANY 0xC3C LLC 4.2.19.1
LLC_REF_HIT.NO_SNOOP 0xC3D LLC 4.2.19.1
LLC_REF_HIT.SNOOP OxC3E LLC 4.2.19.1
LLC_REF_HIT.SNOOP_FWD OxC3F LLC 4.2.19.1
LLC_REF_MISS_DATA.ANY 0xC4B LLC 4.2.19.3
LLC_REF_MISS_DATA.READ 0xC4C LLC 4.2.19.3
LLC_REF_MISS_INST.ANY 0xC4D LLC 4.2.19.4
LLC_REF_MISS_INST.PRIMARY OxC4E LLC 4.2.19.4
LLC_REF_MISS.ANY 0xC41 LLC 4.2.19.2
LLC_REF_MISS.MEM_LCL_ANY 0oxC42 LLC 4.2.19.2
LLC_REF_MISS.MEM_LCL_NO_SNOOP 0xC44 LLC 4.2.19.2
LLC_REF_MISS.MEM_LCL_SNOOP 0xC45 LLC 4.2.19.2
LLC_REF_MISS.MEM_LCL_SNOOP_FWD 0xC46 LLC 4.2.19.2
LLC_REF_MISS.MEM_RMT_ANY 0xC43 LLC 4.2.19.2
LLC_REF_MISS.MEM_RMT_NO_SNOOP oxc4a7 LLC 4.2.19.2
LLC_REF_MISS.MEM_RMT_SNOOP 0xC48 LLC 4.2.19.2
LLC_REF_MISS.MEM_RMT_SNOOP_FWD 0xC49 LLC 4.2.19.2
LLC_REF_SYS_ANY 0xC40 LLC 4.2.19.5
LLC_REF_UNKNOWN OxC4A LLC 4.2.19.6
MLD_BWMODE_CYC 0xCD6 MLD 4.2.13.1
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MLD_BYPASS 0xCD4 MLD 4.2.13.2
MLD_BYPASS_ATTEMPT 0xCD3 MLD 4.2.13.3
MLD_CYC_STALL.ANY 0xCD8 MLD 4.2.13.4
MLD_CYC_STALL.CRIT_BYP 0xCDD MLD 4.2.13.4
MLD_CYC_STALL.FILL_W OxCDC MLD 4.2.13.4
MLD_CYC_STALL.HPW OxCDF MLD 4.2.13.4
MLD_CYC_STALL.RAW OxCDA MLD 4.2.13.4
MLD_CYC_STALL.RW_BANK OxCD9 MLD 4.2.13.4
MLD_CYC_STALL.SEMAPHORE 0xCDB MLD 4.2.13.4
MLD_CYC_STALL.SPLIT_CRIT_BYP OxCE6 MLD 4.2.13.4
MLD_CYC_STALL.SPLIT_OVERSUB OxCE5 MLD 4.2.13.4
MLD_CYC_STALL.SPLIT_RAW OxCE4 MLD 4.2.13.4
MLD_CYC_STALL.SPLIT_RR_BANK OxCE2 MLD 4.2.13.4
MLD_CYC_STALL.SPLIT_RW_BANK OxCE3 MLD 4.2.13.4
MLD_CYC_STALL.SPLIT_WW_BANK OxCE1 MLD 4.2.13.4
MLD_CYC_STALL.TAG_ERR OxCEO MLD 4.2.13.4
MLD_CYC_STALL.WB_FIFO OxCDE MLD 4.2.13.4
MLD_FAB_COUNT.LSB OxCF7 MLD 4.2.13.5
MLD_FAB_COUNT.MSB OxCF8 MLD 4.2.13.5
MLD_FAB_OVERFLOW OxCD1 MLD 4.2.13.6
MLD_FILL_MESI_STATE_BUDDY.ANY 0xCC4 MLD 4.2.13.7
MLD_FILL_MESI_STATE_BUDDY.E OxCC5 MLD 4.2.13.7
MLD_FILL_MESI_STATE_BUDDY.I OxCC7 MLD 4.2.13.7
MLD_FILL_MESI_STATE_BUDDY.S 0xCC6 MLD 4.2.13.7
MLD_FILL_MESI_STATE_PRIMARY.ANY OxCBF MLD 4.2.13.8
MLD_FILL_MESI_STATE_PRIMARY.E OxCC1 MLD 4.2.13.8
MLD_FILL_MESI_STATE_PRIMARY.I OxCC3 MLD 4.2.13.8
MLD_FILL_MESI_STATE_PRIMARY.M 0xCCO MLD 4.2.13.8
MLD_FILL_MESI_STATE_PRIMARY.S OxCC2 MLD 4.2.13.8
MLD_HINT_DEFER OxCDO MLD 4.2.13.9
MLD_HINT_NOALLOC 0OxCCB MLD 4.2.13.10
MLD_HINT_NO_BUDDY OxCCD MLD 4.2.13.11
MLD_HINT_NO_MULTI_HWPREF OXCCE | MLD

MLD_HINT_NRU OoxCCC MLD 4.2.13.13
MLD_HINT_PREF_DROP OxCCF MLD 4.2.13.12
MLD_ISSUE_SRC.ANY OXCA7 MLD 4.2.13.14
MLD_ISSUE_SRC.BYPASS OxCA8 MLD 4.2.13.14
MLD_ISSUE_SRC.FAB OxCAB MLD 4.2.13.14
MLD_ISSUE_SRC.0ZQ OxCA9 MLD 4.2.13.14
MLD_ISSUE_SRC.SMQ OXCAA MLD 4.2.13.14
MLD_ISSUE_SRC.SNOOP OxCAC MLD 4.2.13.14
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MLD_LOAD.ANY 0oxCB4 MLD 4.2.13.15
MLD_LOAD.HIT 0xCB5 MLD 4.2.13.15
MLD_LOAD.MISS OxCB6 MLD 4.2.13.15
MLD_LOAD.PRIMARY OxCB7 MLD 4.2.13.15
MLD_LOAD.SECONDARY 0xCB8 MLD 4.2.13.15
MLD_LOST_BW.ANY OxCE7 MLD 4.2.13.16
MLD_LOST_BW.FAB_NOP OxCEF MLD 4.2.13.16
MLD_LOST_BW.NOP OxCF4 MLD 4.2.13.16
MLD_LOST_BW.NOP_STALL OxCF2 MLD 4.2.13.16
MLD_LOST_BW.OZQ_FAB_FULL OxCEA MLD 4.2.13.16
MLD_LOST_BW.OZQ_FAB_PREEMPT OxCEC MLD 4.2.13.16
MLD_LOST_BW.0OZQ_NOP OxCE8 MLD 4.2.13.16
MLD_LOST_BW.0ZQ_ NOP_ACQ OXCE9 MLD 4.2.13.16
MLD_LOST_BW.OZQ_SMQ_FULL OxCEB MLD 4.2.13.16
MLD_LOST_BW.OZQ_SMQ_PREEMPT OxCED MLD 4.2.13.16
MLD_LOST_BW.0ZQ_SNOOP_PREEMPT OxCEE MLD 4.2.13.16
MLD_LOST_BW.SMQ_NOP OxCFO MLD 4.2.13.16
MLD_LOST_BW.SPLIT_BUBBLE OxCF1 MLD 4.2.13.16
MLD_LOST_BW.STALL OxCF3 MLD 4.2.13.16
MLD_NOALLOC_CASTOUT OxCCA MLD 4.2.13.17
MLD_NOALLOC_FILL 0xCC9 MLD 4.2.13.18
MLD_OZDATA_COUNT.LSB OxCFE MLD 4.2.13.19
MLD_OZDATA_COUNT.MSB OxCFF MLD 4.2.13.19
MLD_OZQ_COUNT.LSB OxCF5 MLD 4.2.13.20
MLD_0OZQ_COUNT.MSB OxCF6 MLD 4.2.13.20
MLD_OZQ_INSERT 0xCD2 MLD 4.2.13.21
MLD_0OZQ_PREEMPTED 0OxCD5 MLD 4.2.13.22
MLD_REFR.ANY OxCAD MLD 4.2.13.23
MLD_RERHIT OxCAE MLD 4.2.13.23
MLD_REF.MISS OxXCAF MLD 4.2.13.23
MLD_REF.PRIMARY 0xCBO MLD 4.2.13.23
MLD_REF.SECONDARY 0xCB1 MLD 4.2.13.23
MLD_REF.SECONDARY_DROP 0xCB2 MLD 4.2.13.23
MLD_REFR.UC_WC_STORE 0xCB3 MLD 4.2.13.23
MLD_SMQ_COUNT.LSB OxCF9 MLD 4.2.13.24
MLD_SMQ_COUNT.MSB OXCFA MLD 4.2.13.24
MLD_SMQ_PRIORITY 0xCD7 MLD 4.2.13.25
MLD_SMQ_REF.ANY 0xCB9 MLD 4.2.13.26
MLD_SMQ_REF.HIT OxCBA MLD 4.2.13.26
MLD_SMQ_REF.MISS 0xCBB MLD 4.2.13.26
MLD_SMQ_REF.PRIMARY 0xCBC MLD 4.2.13.26
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MLD_SMQ_REF.SECONDARY 0xCBD MLD 4.2.13.26
MLD_SMQ_REF.SECONDARY_DROP OxCBE MLD 4.2.13.26
MLD_SNOOP_DEFER 0xCC8 MLD 4.2.13.27
MLD_WCB_CREDIT OxCFD MLD 4.2.13.28
MLD_WLB_COUNT.LSB OxCFB MLD 4.2.13.29
MLD_WLB_COUNT.MSB OxCFC MLD 4.2.13.29
MLITLB_HPW_ABORTS 0x870 MLITLB 4.2.11.1
MLITLB_MISS Ox86E MLITLB 4.2.11.2
MLI_HIT_CONFLICT.ANY Ox84E MmLI 4.2.9.1
MLI_HIT_CONFLICT.DMND Ox84F MLI 4.2.9.1
MLI_HIT_CONFLICT.PREF 0x850 MLI 4.2.9.1
MLI_READ_UC.ANY 0x847 MmLI 4.2.9.3
MLI_READ_UC.DMND 0x848 MLI 4.2.9.3
MLI_READ_UC.PREF 0x849 MLI 4.2.9.3
MLI_READ.ANY_ANY 0x83C MmLI 4.2.9.2
MLI_READ.ANY_DMND 0x83D MLI 4.2.9.2
MLI_READ.ANY_PREF Ox83E MLI 4.2.9.2
MLI_READ.HIT_ANY Ox83F MmLI 4.2.9.2
MLI_READ.HIT_DMND_LRU 0x842 MLI 4.2.9.2
MLI_READ.HIT_DMND_NOLRU 0x840 MLI 4.2.9.2
MLI_READ.HIT_PREF_LRU 0x843 MmLI 4.2.9.2
MLI_READ.HIT_PREF_NOLRU 0x841 MLI 4.2.9.2
MLI_READ.MISS_ANY 0x844 MLI 4.2.9.2
MLI_READ.MISS_DMND 0x845 mLI 4.2.9.2
MLI_READ.MISS_PREF 0x846 MLI 4.2.9.2
MLI_RECIRCULATE.ANY Ox84A MLI 4.2.9.4
MLI_RECIRCULATE.DMND 0x84B MLI 4.2.9.4
MLI_RECIRCULATE.PREF 0x84C MLI 4.2.9.4
MLI_RETURN_LINE 0x860 FLI 4.2.8.14
MLI_SNOOP_HIT 0x852 MLI 4.2.9.5
MLI_SNOOP_INVAL_BLK_LOOKUP 0x84D MLI 4.2.9.6
MLI_SPEC_ABORT 0x851 MLI 4.2.9.7
MT_BE_BGND_CYC_IN_STATE.HU 0x143 Multithreading | 4.2.21.2
MT_BE_BGND_CYC_IN_STATE.HW 0x144 Multithreading | 4.2.21.2
MT_BE_BGND_CYC_IN_STATE.LU 0x147 Multithreading | 4.2.21.2
MT_BE_BGND_CYC_IN_STATE.LW 0x148 Multithreading | 4.2.21.2
MT_BE_BGND_CYC_IN_STATE.NU 0x145 Multithreading | 4.2.21.2
MT_BE_BGND_CYC_IN_STATE.NW 0x146 Multithreading | 4.2.21.2
MT_BE_FAIR_STATE.GREEN 0x149 Multithreading | 4.2.21.3
MT_BE_FAIR_STATE.ORANGE 0x14B Multithreading 4.2.21.3
MT_BE_FAIR_STATE.RED 0x14C Multithreading 4.2.21.3
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MT_BE_FAIR_STATE.YELLOW Ox14A Multithreading 4.2.21.3
MT_BE_FAIR_TRANSITION.GRNO 0x150 Multithreading 4.2.21.4
MT_BE_FAIR_TRANSITION.GRN2YLW 0x14D Multithreading 4.2.21.4
MT_BE_FAIR_TRANSITION.ORN2RED Ox14F Multithreading 4.2.21.4
MT_BE_FAIR_TRANSITION.YLW20ORN Ox14E Multithreading 4.2.21.4
MT_BE_THRSW_ACTUAL_IN.ALAT_INVAL 0x136 Multithreading 4.2.21.5
MT_BE_THRSW_ACTUAL_IN.HPWINS 0x134 Multithreading 4.2.21.5
MT_BE_THRSW_ACTUAL_IN.IBQ_NOTEMPTY 0x135 Multithreading | 4.2.21.5
MT_BE_THRSW_ACTUAL_IN.LP_EXIT 0x137 Multithreading 4.2.21.5
MT_BE_THRSW_ACTUAL_IN.MLDRTN 0x133 Multithreading 4.2.21.5
MT_BE_THRSW_ACTUAL_IN.TIMEOUT 0x132 Multithreading 4.2.21.5
MT_BE_THRSW_ACTUAL_IN.FAIR 0x138 Multithreading 4.2.21.5
MT_BE_THRSW_ACTUAL_OUT.ANY Ox12A Multithreading | 4.2.21.6
MT_BE_THRSW_ACTUAL_OUT.ATPAUSE Ox12E Multithreading 4.2.21.6
MT_BE_THRSW_ACTUAL_OUT.HPW_MISS 0x12C Multithreading 4.2.21.6
MT_BE_THRSW_ACTUAL_OUT.IBQ_EMPTY 0x12D | Multithreading | 4.2.21.6
MT_BE_THRSW_ACTUAL_OUT.INJ_DBG 0x131 Multithreading | 4.2.21.6
MT_BE_THRSW_ACTUAL_OUT.LP_ENTER Ox12F Multithreading 4.2.21.6
MT_BE_THRSW_ACTUAL_OUT.MLD_USE 0x12B Multithreading | 4.2.21.6
MT_BE_THRSW_ACTUAL_OUT.RFIX 0x130 Multithreading 4.2.21.6
MT_BE_THRSW_DISABLE.EXPL Ox13A Multithreading 4.2.21.7
MT_BE_THRSW_DISABLE.IMPL 0x13B Multithreading 4.2.21.7
MT_BE_THRSW_DROP 0x139 Multithreading | 4.2.21.8
MT_BE_THRSW_HOLD 0x13C Multithreading 4.2.21.9
MT_BE_THRSW_STALL.ANY 0x13D Multithreading 4.2.21.10
MT_BE_THRSW_STALL.CRAB 0x141 Multithreading 4.2.21.10
MT_BE_THRSW_STALL.FLD 0x142 Multithreading | 4.2.21.10
MT_BE_THRSW_STALL.PIPE Ox13F Multithreading 4.2.21.10
MT_BE_THRSW_STALL.RSE 0x140 Multithreading 4.2.21.10
MT_BE_THRSW_STALL.SWITCH O0x13E Multithreading | 4.2.21.10
MT_FE_BE_IN_SAME_THREAD 0x874 Multithreading | 4.2.21.11
MT_FE_BGND_CYC_IN_STATE.HIGH O0X8A0 Multithreading | 4.2.21.12
MT_FE_BGND_CYC_IN_STATE.LOW OX89E Multithreading | 4.2.21.12
MT_FE_BGND_CYC_IN_STATE.NOMINAL OX89F Multithreading | 4.2.21.12
MT_FE_THRSW_ACTUAL_IN.BRQ_NON_BLK 0x881 Multithreading | 4.2.21.13
MT_FE_THRSW_ACTUAL_IN.IBQ_EMPTY Ox87A Multithreading | 4.2.21.13
MT_FE_THRSW_ACTUAL_IN.IBQ_NOTFULL 0x879 Multithreading | 4.2.21.13
MT_FE_THRSW_ACTUAL_IN.MLI_UCRTN Ox87F Multithreading | 4.2.21.13
MT_FE_THRSW_ACTUAL_IN.MLI_WBRTN 0x87D | Multithreading | 4.2.21.13
MT_FE_THRSW_ACTUAL_OUT.ANY 0x876 Multithreading 4.2.21.14
MT_FE_THRSW_ACTUAL_OUT.BE_FOLLOW 0x883 Multithreading | 4.2.21.14
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MT_FE_THRSW_ACTUAL_OUT.BRQ_BLK 0x880 Multithreading | 4.2.21.14
MT_FE_THRSW_ACTUAL_OUT.HINT_BSWT 0x882 Multithreading | 4.2.21.14
MT_FE_THRSW_ACTUAL_OUT.IBQ_FULL 0x878 Multithreading 4.2.21.14
MT_FE_THRSW_ACTUAL_OUT.IBQ_NOTEMPTY 0x87B Multithreading | 4.2.21.14
MT_FE_THRSW_ACTUAL_OUT.LOCKED 0x884 Multithreading 4.2.21.14
MT_FE_THRSW_ACTUAL_OUT.MLI_UCMISS Ox87E Multithreading 4.2.21.14
MT_FE_THRSW_ACTUAL_OUT.MLI_WBMISS 0x87C Multithreading 4.2.21.14
MT_FE_THRSW_ACTUAL_OUT.TIMEOUT 0ox877 Multithreading 4.2.21.14
MT_FE_THRSW_MISS_IN.ANY 0x886 Multithreading 4.2.21.15
MT_FE_THRSW_MISS_IN.BRQ_NON_BLK 0x891 Multithreading | 4.2.21.15
MT_FE_THRSW_MISS_IN.IBQ_EMPTY Ox88A Multithreading | 4.2.21.15
MT_FE_THRSW_MISS_IN.IBQ_NOTFULL 0x889 Multithreading 4.2.21.15
MT_FE_THRSW_MISS_IN.MLI_UCRTN Ox88F Multithreading | 4.2.21.15
MT_FE_THRSW_MISS_IN.MLI_WBRTN 0x88D | Multithreading | 4.2.21.15
MT_FE_THRSW_MISS_OUT.ANY 0x885 Multithreading 4.2.21.16
MT_FE_THRSW_MISS_OUT.BE_FOLLOW 0x893 Multithreading | 4.2.21.16
MT_FE_THRSW_MISS_OUT.BRQ_BLK 0x890 Multithreading | 4.2.21.16
MT_FE_THRSW_MISS_OUT.HINT_BSWT 0x892 Multithreading 4.2.21.16
MT_FE_THRSW_MISS_OUT.IBQ_FULL 0x888 Multithreading | 4.2.21.16
MT_FE_THRSW_MISS_OUT.IBQ_NOTEMPTY 0x88B Multithreading | 4.2.21.16
MT_FE_THRSW_MISS_OUT.LOCKED 0x894 Multithreading 4.2.21.16
MT_FE_THRSW_MISS_OUT.MLI_UCMISS OX88E Multithreading | 4.2.21.16
MT_FE_THRSW_MISS_OUT.MLI_WBMISS 0x88C Multithreading | 4.2.21.16
MT_FE_THRSW_MISS_OUT.TIMEOUT 0x887 Multithreading 4.2.21.16
MT_FE_THRSW_STALL.ANY 0x895 Multithreading 4.2.21.17
MT_FE_THRSW_STALL.BLK_ANY 0x899 Multithreading | 4.2.21.17
MT_FE_THRSW_STALL.BLK_FW_PROG 0x89C Multithreading | 4.2.21.17
MT_FE_THRSW_STALL.BLK_IN_PROG 0x89B Multithreading | 4.2.21.17
MT_FE_THRSW_STALL.BLK_IPC_MISS OX89A Multithreading | 4.2.21.17
MT_FE_THRSW_STALL.BLK_THRESH 0x89D | Multithreading | 4.2.21.17
MT_FE_THRSW_STALL.EXPL 0x897 Multithreading 4.2.21.17
MT_FE_THRSW_STALL.IMPL 0x898 Multithreading 4.2.21.17
MT_FE_THRSW_STALL.MTLCK 0x896 Multithreading | 4.2.21.17
M_ASYNC_OP_ISSUE.ANY OXx10A Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.CRAB_RET 0x110 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.DTLBTRNSFR_TLBINSERT 0x114 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.FLUSH_ST_INVAL 0x115 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.HPW_FAULT 0x11C Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.HPW_LOAD Ox10F Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.HPW_TLBINSERT 0x11B Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.HW_PREF ox111 Dispersal 4.2.2.4
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M_ASYNC_OP_ISSUE.ITC_D 0x11D | Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.ITR_D Ox11E Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.MOVTOPKR 0Ox121 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.MOVTORR 0x120 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.NONE 0x10B Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.PAMERR_PAPURGE 0x116 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.PAPURGE 0x112 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.PTC_E 0x123 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.PTC_G 0x124 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.PTC_GA 0x125 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.PTC_L 0x122 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.PTR_D Ox11F Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.RIDVPN_PURGE 0x118 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.RSE_LOAD 0x129 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.RSE_STORE 0x128 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.SHOOTDOWN_G 0x126 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.SHOOTDOWN_GA 0x127 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.SNOOP 0x10D Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.SNOOP_PALKUP 0x10C Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.SNOOP_S Ox10E Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.TLB_TSWITCH 0x119 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.TSWITCH Ox11A Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.VAMERR_VAPURGE 0x113 Dispersal 4.2.2.4
M_ASYNC_OP_ISSUE.VRNRIDVPN_PURGE 0x117 Dispersal 4.2.2.4
PREF_DROP.DTLB_MISS OxODA DPF 4.2.16.9
PREF_DROP.FLDTLB_MISS 0x0D9 DPF 4.2.16.9
PREF_DROP.FLD_HIT 0x0DB DPF 4.2.16.9
PREF_DROP.FLD_SECONDARY_MISS 0x0DC DPF 4.2.16.9
RETIRED_INST_BR 0x820 Execution 4.2.3.18
RETIRED_INST_FC 0xC30 Execution 4.2.3.19
RETIRED_INST_FCI 0xC31 Execution 4.2.3.20
RETIRED_INST_FP 0x00B Execution 4.2.3.21
RETIRED_INST_LD_FP OxODF Execution 4.2.3.22
RETIRED_INST_LD_INT OxODE Execution 4.2.3.23
RETIRED_INST_M.ACQ OxO0F4 Execution 4.2.3.24
RETIRED_INST_M.ANY 0x00D Execution 4.2.3.24
RETIRED_INST_M.MOVTOBSPST OxO0CA Execution 4.2.3.24
RETIRED_INST_M.MOVTODAHR 0x00E Execution 4.2.3.24
RETIRED_INST_M.REL OxO0F5 Execution 4.2.3.24
RETIRED_INST_NOP O0x00A Execution 4.2.3.25
RETIRED_INST_PTCG 0xC34 Execution 4.2.3.26
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RETIRED_INST_RSE 0x157 Execution 4.2.3.27
RETIRED_INST_SEMAPHORE OxO0E5 Execution 4.2.3.28
RETIRED_INST_ST_FP OxOE2 Execution 4.2.3.29
RETIRED_INST_ST_INT OxOE1 Execution 4.2.3.30
RETIRED_INST_TAGGED.IAMO_OPMO 0x005 Execution 4.2.3.31
RETIRED_INST_TAGGED.IAM1_OPM1 0x006 Execution 4.2.3.31
RETIRED_INST_TAGGED.IAM2_OPMO 0x007 Execution 4.2.3.31
RETIRED_INST_TAGGED.IAM3_OPM1 0x008 Execution 4.2.3.31
RETIRED_PREDICATE_SQUASHED 0x009 Execution 4.2.3.32
RIL_ARB_PRI_LOST.AD 0xC60 RIL 4.2.17.1
RIL_ARB_PRI_LOST.AD_FWD_PROG 0xC61 RIL 4.2.17.1
RIL_ARB_PRI_LOST.BL 0xC62 RIL 4.2.17.1
RIL_ARB_PRI_LOST.BL_FWD_PROG 0xC63 RIL 4.2.17.1
RIL_BL_WRITE.ANY 0xC5C RIL 4.2.17.2
RIL_BL_WRITE.SLB OxC5F RIL 4.2.17.2
RIL_BL_WRITE.WLB 0xC5D RIL 4.2.17.2
RIL_BL_WRITE.WLB_BOGUS OxC5E RIL 4.2.17.2
RIL_CBQ_EVICT.FULL 0xC53 RIL 4.2.17.3
RIL_CBQ_EVICT.WCB_FLUSH 0xC52 RIL 4.2.17.3
RIL_CRDT_MLD_FDB_FULL OxC6E RIL 4.2.17.4
RIL_CRDT_MLD_FDB_FULL_BLK OxC6F RIL 4.2.17.5
RIL_CRDT_PRI_BLK.AD_ALL 0xC64 RIL 4.2.17.6
RIL_CRDT_PRI_BLK.AD_CBQ 0xC68 RIL 4.2.17.6
RIL_CRDT_PRI_BLK.AD_DRQ 0xC66 RIL 4.2.17.6
RIL_CRDT_PRI_BLK.AD_FRQ 0xC65 RIL 4.2.17.6
RIL_CRDT_PRI_BLK.AD_WRQ 0xC67 RIL 4.2.17.6
RIL_CRDT_PRI_BLK.AK_ALL 0xC69 RIL 4.2.17.6
RIL_CRDT_PRI_BLK.BL_ALL OxC6A RIL 4.2.17.6
RIL_CRDT_PRI_BLK.BL_CBQ 0xC6D | RIL 4.2.17.6
RIL_CRDT_PRI_BLK.BL_SNQ 0xC6B RIL 4.2.17.6
RIL_CRDT_PRI_BLK.BL_WRQ 0xC6C | RIL 4.2.17.6
RIL_CRDT_SNQ_BLK.ANY 0xC70 RIL 4.2.17.7
RIL_CRDT_SNQ_BLK.ANY_Q_ FULL OxC7D | RIL 4.2.17.7
RIL_CRDT_SNQ_BLK.DFRQ 0xC79 RIL 4.2.17.7
RIL_CRDT_SNQ_BLK.HALT OxC71 RIL 4.2.17.7
RIL_CRDT_SNQ_BLK.MLD_FULL OxC77 RIL 4.2.17.7
RIL_CRDT_SNQ_BLK.MLD_FWD_PROG 0xC74 RIL 4.2.17.7
RIL_CRDT_SNQ_BLK.MLI_FULL OxC76 RIL 4.2.17.7
RIL_CRDT_SNQ_BLK.MLI_FWD_PROG 0xC73 RIL 4.2.17.7
RIL_CRDT_SNQ_BLK.MLI_OR_MLD_FULL 0xC78 RIL 4.2.17.7
RIL_CRDT_SNQ_BLK.MLI_OR_MLD_FWD_PROG 0xC75 RIL 4.2.17.7
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RIL_CRDT_SNQ_BLK.RSPQ OXC7A | RIL 4.2.17.7
RIL_CRDT_SNQ_BLK.SLB_DQ OxC7B | RIL 4.2.17.7
RIL_CRDT_SNQ_BLK.SRLZ 0OxC72 RIL 4.2.17.7
RIL_CRDT_SNQ_BLK.USEMANY_ANY 0xC96 RIL 4.2.17.7
RIL_CRDT_SNQ_BLK.USEMANY_BYP 0xC97 RIL 4.2.17.7
RIL_CRDT_SNQ_BLK.WLB_DQ OxC7C RIL 4.2.17.7
RIL_DATA_RETURN.EARLY_FILL_EM 0xC58 RIL 4.2.17.8
RIL_DATA_RETURN.EARLY_FILL_S 0xC59 RIL 4.2.17.8
RIL_DATA_RETURN.MLD_ANY 0xC56 RIL 4.2.17.8
RIL_DATA_RETURN.MLD_CRIT 0xC57 RIL 4.2.17.8
RIL_DATA_RETURN.PRI_ANY 0xC54 RIL 4.2.17.8
RIL_DATA_RETURN.PRI_MLD OxC55 RIL 4.2.17.8
RIL_DRQ_PACE_BUBBLE OxC8F RIL 4.2.17.10
RIL_DRQ_VALID.LSB OxC8A RIL 4.2.17.11
RIL_DRQ_VALID.MSB 0xC89 RIL 4.2.17.11
RIL_DRQ.EMPTY 0xC80 RIL 4.2.17.9
RIL_DRQ.LIMIT_HIT 0xC81 RIL 4.2.17.9
RIL_FRQ_VALID.LSB 0xC88 RIL 4.2.17.13
RIL_FRQ_VALID.MSB 0xC87 RIL 4.2.17.13
RIL_FRQ.EMPTY OxC7E RIL 4.2.17.12
RIL_FRQ.LIMIT_HIT OXC7F RIL 4.2.17.12
RIL_INTERRUPT 0xC51 RIL 4.2.17.14
RIL_PRI_THROTTLE_ASSERTED 0xC90 RIL 4.2.17.15
RIL_PRI_THROTTLE_RECOV 0xC91 RIL 4.2.17.16
RIL_REQ_HINT_NRU 0xC3B RIL 4.2.17.18
RIL_REQ_OTHER.CC 0xC32 RIL 4.2.17.19
RIL_REQ_OTHER.DRQ_ANY 0xC33 RIL 4.2.17.19
RIL_REQ_OTHER.FC 0xC30 RIL 4.2.17.19
RIL_REQ_OTHER.FCI 0xC31 RIL 4.2.17.19
RIL_REQ_OTHER.LRUHINT_ANY 0xC37 RIL 4.2.17.19
RIL_REQ_OTHER.LRUHINT_FROM_MLD 0xC36 RIL 4.2.17.19
RIL_REQ_OTHER.LRUHINT_MISS_ANY 0xC39 RIL 4.2.17.19
RIL_REQ_OTHER.LRUHINT_MISS_MLD OxC3A RIL 4.2.17.19
RIL_REQ_OTHER.LRUHINT_MLD 0xC38 RIL 4.2.17.19
RIL_REQ_OTHER.PTCG 0xC34 RIL 4.2.17.19
RIL_REQ_OTHER.PTCG_PEND 0xC35 RIL 4.2.17.19
RIL_REQ_OTHER.WRQ_FC_FCI OXC2B | RIL 4.2.17.19
RIL_REQ_OTHER.WRQ_SKIP_LRUHINT 0oxC2D RIL 4.2.17.19
RIL_REQ_OTHER.WRTBCK_MLD_EVICT OxC2E RIL 4.2.17.19
RIL_REQ_OTHER.WRTBCK_MLD_FC OxC2F RIL 4.2.17.19
RIL_REQ_OTHER.WRTBCK_WRQ OxC2A RIL 4.2.17.19
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RIL_REQ_OTHER.WRTBCK_WRQ_SKIP 0xC2C | RIL 4.2.17.19
RIL_REQ_REF_DATA.ANY 0oxC18 RIL 4.2.17.21
RIL_REQ_REF_DATA.DRQ_ANY 0xC28 RIL 4.2.17.21
RIL_REQ_REF_DATA.NC_ANY 0xC20 RIL 4.2.17.21
RIL_REQ_REF_DATA.NC_READ_ANY oxC21 RIL 4.2.17.21
RIL_REQ_REF_DATA.NC_READ_UC 0xC22 RIL 4.2.17.21
RIL_REQ_REF_DATA.NC_WRITE_ANY 0xC23 RIL 4.2.17.21
RIL_REQ_REF_DATA.NC_WRITE_UC 0xC26 RIL 4.2.17.21
RIL_REQ_REF_DATA.NC_WRITE_WC_ANY 0xC24 RIL 4.2.17.21
RIL_REQ_REF_DATA.NC_WRITE_WC_FULL 0xC25 RIL 4.2.17.21
RIL_REQ_REF_DATA.NC_WRITE_WC_MLD oxCc27 RIL 4.2.17.21
RIL_REQ_REF_DATA.WB_ANY 0xC19 RIL 4.2.17.21
RIL_REQ_REF_DATA.WB_CRD OxC1C | RIL 4.2.17.21
RIL_REQ_REF_DATA.WB_DRD 0xC1D | RIL 4.2.17.21
RIL_REQ_REF_DATA.WB_MLD_ANY OxC1A RIL 4.2.17.21
RIL_REQ_REF_DATA.WB_MLD_BUDDY O0xC1B | RIL 4.2.17.21
RIL_REQ_REF_DATA.WB_RFO OXC1E RIL 4.2.17.21
RIL_REQ_REF_DATA.WB_SELF_SNOOP OxC1F RIL 4.2.17.21
RIL_REQ_REF_DATA.WRQ_ANY 0xC29 RIL 4.2.17.21
RIL_REQ_REF_INST.ANY 0xC14 RIL 4.2.17.22
RIL_REQ_REF_INST.NC 0xC15 RIL 4.2.17.22
RIL_REQ_ REF_INST.WB_ANY 0xC16 RIL 4.2.17.22
RIL_REQ_REF_INST.WB_DMND 0oxC17 RIL 4.2.17.22
RIL_REQ_REF.ANY 0xC13 RIL 4.2.17.20
RIL_REQ.ANY 0xC12 RIL 4.2.17.17
RIL_RESP.GO OxC5A RIL 4.2.17.23
RIL_RESP.WRITEPULL 0xC5B RIL 4.2.17.23
RIL_RRQ.LIMIT_HIT 0xC84 RIL 4.2.17.24
RIL_SEB.BGF_QUIESCE_ACTIVE 0xC94 RIL 4.2.17.25
RIL_SEB.LDST_QUIESCE_PEND 0xC93 RIL 4.2.17.25
RIL_SEB.PTC_QUIESCE_PEND 0xC92 RIL 4.2.17.25
RIL_SHOOTDOWN OxC4F RIL 4.2.17.26
RIL_SHOOTDOWN_PEND_CYC 0xC50 RIL 4.2.17.27
RIL_SNOOP_REQ.ANY 0xC0o1 RIL 4.2.17.28
RIL_SNOOP_REQ.CODE_ANY 0xC02 RIL 4.2.17.28
RIL_SNOOP_REQ.CODE_SELF 0xC03 RIL 4.2.17.28
RIL_SNOOP_REQ.CODE_SIBLING 0xC04 RIL 4.2.17.28
RIL_SNOOP_REQ.DATA_ANY 0xCO05 RIL 4.2.17.28
RIL_SNOOP_REQ.DATA_SELF 0xC06 RIL 4.2.17.28
RIL_SNOOP_REQ.DATA_SIBLING 0xCO07 RIL 4.2.17.28
RIL_SNOOP_REQ.INVAL_ANY 0xCo08 RIL 4.2.17.28
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RIL_SNOOP_REQ.INVAL_LLC_EVICT 0xCO0B RIL 4.2.17.28
RIL_SNOOP_REQ.INVAL_SELF 0xC09 RIL 4.2.17.28
RIL_SNOOP_REQ.INVAL_SIBLING OxCOA RIL 4.2.17.28
RIL_SNOOP_RESP.MLD_DEFER 0xC11 RIL 4.2.17.29
RIL_SNOOP_RESP.MLD_HIT_E OxCOF RIL 4.2.17.29
RIL_SNOOP_RESP.MLD_HIT_M 0xC10 RIL 4.2.17.29
RIL_SNOOP_RESP.MLD_HIT_S OxCOE RIL 4.2.17.29
RIL_SNOOP_RESP.MLD_MISS 0xCoC RIL 4.2.17.29
RIL_SNOOP_RESP.WRQ_HIT_M 0xCOD RIL 4.2.17.29
RIL_SNQ_VALID.LSB OxC8E RIL 4.2.17.31
RIL_SNQ_VALID.MSB 0xC8D RIL 4.2.17.31
RIL_SNQ.EMPTY 0xC85 RIL 4.2.17.30
RIL_SNQ.LIMIT_HIT 0xC86 RIL 4.2.17.30
RIL_WRQ_VALID.LSB 0xC8C RIL 4.2.17.33
RIL_WRQ_VALID.MSB 0xC8B RIL 4.2.17.33
RIL_WRQ.EMPTY 0xC82 RIL 4.2.17.32
RIL_WRQ.LIMIT_HIT 0xC83 RIL 4.2.17.32
RSE_CURRENT_REG.LSB 0x154 RSE 4.2.18.1
RSE_CURRENT_REG.MSB 0x153 RSE 4.2.18.1
RSE_DIRTY_REG.LSB 0x156 RSE 4.2.18.2
RSE_DIRTY_REG.MSB 0x155 RSE 4.2.18.2
RSE_REF_RETIRED.ANY 0x158 RSE 4.2.18.3
RSE_REF_RETIRED.LOAD 0x159 RSE 4.2.18.3
RSE_REF_RETIRED.STORE Ox15A RSE 4.2.18.3
SERIALIZATION_EVENT 0x021 System 4.2.20.3
UNCORE_FREEZE 0xC9B System 4.2.20.4
4.2 Performance Monitor Events by Area
4.2.1 Basic Events
This section enumerates Basic performance monitoring events.
4.2.1.1 CPU_OP_CYCLES
Description CPU back-end pipeline execution cycle count
Max Inc/Cyc 1
MT Capture Type C
Subevents:
(ANY) 0x002
Counter Affinity OxffffO
IAR/OPC/DAR/DREF -/-1-1-
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Definition CPU cycle count

HALTED 0x003

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-1-

Definition Halted state cycle count. Cycles spent in low-power halted state.
Note: In order to count correctly, this event requires PMC.ch to be set as well. It will count halted
cycles spent both in the foreground as well as background thread. To count foreground halted state
cycles: CPU_OP_CYCLES.me(ch=1) - CPU_OP_CYCLES.me(ch=0)

TAGGED 0x004

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/0/-/-

Definition Tagged CPU cycle count. To use this monitor, program tag channel O to the (Instruction Address
Range, Opcode) regions of interest, channel 1 to unconstrained tagging. Counting will be enabled
whenever a valid channel O tag is seen and continue until a valid channel 1 tag without a channel 0
tag is seen.

4.2.1.2 CPU_REF_CYCLES

Description Back-end execution reference cycle count
Max Inc/Cyc 1
MT Capture Type A
Event Code 0x001
Counter Affinity OxffffO
IAR/OPC/DAR/DREF -/-1-/-
Definition CPU reference cycle count. This monitor counts the number of ITC timebase reference cycles spent
in the back-end.
4.2.1.3 FE_OP_CYCLES

Description CPU front-end pipeline execution cycle count

Max Inc/Cyc 1

MT Capture Type F

Event Code 0x875

Counter Affinity Oxa0aaO

IAR/OPC/DAR/DREF -/-1-1-

Definition This event counts the cycles the front end spends in its thread, it's the front-end's version of
CPU_OP_CYCLES. Due to the processor's separately threaded front-end, this monitor must be used
to normalize front-end thread specific events.

NOTE -

4.2.1.4 IA64 INST_RETIRED

Description Instructions retired

Max Inc/Cyc 12

MT Capture Type A

Event Code 0x005

Counter Affinity OxffffO

IAR/OPC/DAR/DREF 1/0/-/-
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IP-EAR L=5P=1
Definition Retired instructions count
NOTE This is an alias for IA64TAGGED_INST_RETIRED.IAMOOPMO
4.2.2 Dispersal Events
This section enumerates Dispersal performance monitoring events.
4.2.2.1 IBL_ISSUE_LOST_BW
The ISSUE_LOST and ISSUE_STOP events work together. See the issue_stop
explanations for more information about the issue_lost event. Both of these events use
the Channel O address tag from IBR address matching.
Description Issue syllables lost estimate
Max Inc/Cyc 11
MT Capture Type A
Definition Counts the number of syllables to the next stop bit that were not issued in this
issue cycle
NOTE This monitor counts syllables as bundle slots and not instructions, i.e., for MLX,
the LX counts as two
Subevents:
9PLUS3 0x086
Counter Affinity 0x55550
IAR/OPC/DAR/DREF 1/-/-/-
IP-EAR L=5P=2
Definition Issue syllables lost due to bundle restrictions
ANY 0x07a
Counter Affinity 0x55550
IAR/OPC/DAR/DREF 1/-/-/-
IP-EAR L=5P=2
Definition Issue syllables lost for any of the possible reasons
ASYM_I 0x07d
Counter Affinity Oxaaaa0
IAR/OPC/DAR/DREF 1/-7-7-
IP-EAR L=5P=2
Definition Issue syllables lost due to | pipe asymmetry
ASYM_M 0x07e
Counter Affinity 0x55550
IAR/OPC/DAR/DREF 1/-/-/-
IP-EAR L=5P=2
Definition Issue syllables lost due to M pipe asymmetry
DROOP 0x07c
Counter Affinity 0x55550
IAR/OPC/DAR/DREF 1/-/-/-
IP-EAR L=5P=2
Definition Issue syllables lost due to 3rd droop power management
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FLD_DMND_MO 0x07f

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue syllables lost due to FLD request for MO
FLD_DMND_M1 0x080

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue syllables lost due to FLD request for M1
OVRSUB_A 0x081

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue syllables lost due to A pipe oversubscription
OVRSUB_F 0x082

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue syllables lost due to F pipe oversubscription
OVRSUB_I 0x083

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue syllables lost due to | pipe oversubscription
OVRSUB_M 0x084

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue syllables lost due to M pipe oversubscription
POWER 0x07b

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue syllables lost due to TDP power management
STRUCT 0x085

Counter Affinity Oxaaaal

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue syllables lost due to structural limitation
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4.2.2.2 IBL_ISSUE
Description Syllables dispersed at IBD
Max Inc/Cyc 12
MT Capture Type A
Definition -
NOTE -
Subevents:
ANY 0x068
Counter Affinity 0x55550
IAR/OPC/DAR/DREF 1/-/-/-
IP-EAR L=5P=2
Definition Syllables dispersed at IBD
M_PIPE 0x069
Counter Affinity 0x55550
IAR/OPC/DAR/DREF 1/-/-/-
IP-EAR L=5P=2
Definition M pipe syllables dispersed at IBD
4.2.2.3 IBL_ISSUE_STOP

Description The reason for the size of the instruction issue group (in the backend pipeline)
Max Inc/Cyc 1
MT Capture Type A

Definition Within a 4 bundle wide issue window, what caused the first effective stop bit in an issue cycle.

NOTE Whenever an issue stall is required, or we have no instructions to issue, this event signals NONE.
Only one of these reasons will be signalled per cycle. They are calculated in a priority order such that
effects of the compiler scheduled program instruction stream are reported first, before asynchronous
microarchitecture events. So, explicit stop bit and over-subscription are reported before FLD demand
or power throttling.

Subevents:

9PLUS3 0x079

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/-7-/-

IP-EAR L=5P=2

Definition Issue stop due to 4th bundle limitations; we encountered an M, I, A, or F in the 4th bundle

ASYM_I 0Ox06f

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue stop due to | pipe asymmetry; an instruction was ready to issue on 11, but needed to be on 10

ASYM_M 0x070

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2
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Definition 'Ivslgue stop due to M pipe asymmetry; an instruction was ready to issue on M1, but needed to be on

BUNDLE 0x078

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue stop due to lack of bundles; we have less than 4 bundles in the window, issued all the bundles
that we had, and didn’t see some other reason to stop issue.

DROOP 0x06e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue stop due to 3rd droop power management

EXPLICIT 0x06¢c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue stop due to explicit stop bit or the end of a non-brp, non-nop.b branch bundle.

FLD_DMND_MO 0x071

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue stop due to FLD demand for MO; there was an instruction that was ready to issue on MO, but

an asynchronous cache operation required MO; so, we stopped issue at that MO instruction

FLD_DMND_M1 0x072

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue stop due to FLD demand for M1; there was an instruction that was ready to issue on M1, but
an asynchronous cache operation required M1; so, we stopped issue at that M1 instruction

NONE 0x06a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue stop due to issue stall or instruction buffer empty, that is, we did not issue, because we
couldn’t

OVRSUB_A 0x075

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue stop due to A pipe oversubscription; we reached the third A instruction in the window

OVRSUB_F 0x076

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue stop due to F pipe oversubscription, we reached the third F instruction in the window
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OVRSUB_I 0x074

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue stop due to | pipe oversubscription; we reached the third | instruction in the window
OVRSUB_M 0x073

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF 1/-7-/-

IP-EAR L=5P=2

Definition Issue stop due to M pipe oversubscription; we reached the third M instruction in the window
POWER 0ox06d

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue stop due to TDP power management

REPLAY 0x06b

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF 1/-/-/-

IP-EAR L=5P=2

Definition Issue stop due to a replay event; after a replay we always re-issue as we did the first time.
STRUCT ox077

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF 1/-7/-/-

IP-EAR L=5P=2

Definition Issue stop due to a structural limitation or power throttling of instruction types; the limitation

includes the end of the 4 bundle wide issue group.

4.2.2.4 M_ASYNC_OP_ISSUE

Description FLD asynchronous operation
Max Inc/Cyc 2
MT Capture Type A

Definition Asynchronous memory operations injected into the backend execution pipeline

NOTE WARNING: Any kind of PMU event filtering (instruction address, opcode matching, data address,
data reference type) can cause these events to be assigned to the wrong thread.

Subevents:

ANY 0x10a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/0/D/R

Definition FLD asynchronous operation

CRAB_RET 0x110

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation CRAB return

DTLBTRNSFR_TLBINSERT

0x114
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Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation DTB transfer TLB insert
FLUSH_ST_INVAL 0x115

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-/-

Definition FLD asynchronous operation flushed store invalidate
HPW_FAULT Ox1llc

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation HPW fault
HPW_LOAD Ox10f

Counter Affinity Oxaaaal

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation HPW load
HPW_TLBINSERT Ox11lb

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation HPW TLB insert
HW_PREF Ox111

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation HW prefetch
ITC_D Ox11d

Counter Affinity Oxaaaal

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation ITC.D
ITR_D Oxlle

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-/-

Definition FLD asynchronous operation ITR.D
MOVTOPKR 0x121

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation move to PKR
MOVTORR 0x120

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation move to RR
NONE 0x10b

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-/-

Definition FLD asynchronous operation none issued

PAMERR_PAPURGE

0x116
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Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation FLDTLBPAM error pa purge
PAPURGE 0x112

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation PA purge
PTC_E 0x123

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation PTC.E
PTC_G 0x124

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation PTC.G
PTC_GA 0x125

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation PTC.GA
PTC_L 0x122

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation PTC.L
PTR_D Ox11f

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation PTR.D
RIDVPN_PURGE 0x118

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-/-

Definition FLD asynchronous operation RID VPN Purge
RSE_LOAD 0x129

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation RSE load
RSE_STORE 0x128

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation RSE store
SHOOTDOWN_G 0x126

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-/-

Definition FLD asynchronous operation shootdown G

SHOOTDOWN_GA

0x127
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Counter Affinity Oxaaaal

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation shootdown GA

SNOOP 0x10d

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-/-

Definition FLD asynchronous operation snoop

SNOOP_PALKUP 0x10c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-/-

Definition FLD asynchronous operation snoop PA lookup

SNOOP_S 0x10e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation snoop shared

TLB_TSWITCH 0x119

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation TLB thread switch

TSWITCH Oxlla

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-/-

Definition FLD asynchronous operation thread switch

VAMERR_VAPURGE 0x113

Counter Affinity Oxaaaal

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation VA purge

VRNRIDVPN_PURGE 0x117

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-1-

Definition FLD asynchronous operation VRN RID VPN purge
4.2.3 Execution Events

This section enumerates Execution performance monitoring events.

4.2.3.1 ALAT_ENTRY_REPLACED

Description ALAT entry replaced
Max Inc/Cyc 2

MT Capture Type A

Event Code 0x152

Counter Affinity 0x55550
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IAR/OPC/DAR/DREF 1/0/D/-
IP-EAR L=6,P=1
Definition An advanced load which was not already in the ALAT replaced a different ALAT entry because the
ALAT was full. Since MO ALAT instructions typically use ALAT locations O to 15, and M1 16 to 31 this
signal may fire if only one half of the ALAT is full. Both the MO and M1 signals may be asserted on the
same clock.
4.2.3.2 ALAT _STORE_HIT

Description ALAT store hit

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x151

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF 1/0/D/-

Definition This is a per-port and per-thread signal (i.e. 4 of them) which is asserted when a store on MO or M1
clears an ALAT entry on thread O or thread 1. Remember that a store on either thread can clear ALAT
entries from the other thread.

NOTE For counting this event the PMU OR’s together the MO and M1 bits of this signal together to produce
a 2 bit per-thread signal.

4.2.3.3 CSPEC_CHKS

Description Retired CHK.S instructions
Max Inc/Cyc 6
MT Capture Type A
Event Code 0x014
Counter Affinity 0x55550
IAR/OPC/DAR/DREF -/-1-1-
IP-EAR L=5P=1
Definition Count of ‘chk.s.[mi] r2, target25' and ‘chk.s f2, target25' instructions that are predicated-on and
retire (inclusive of resteering chk.s).
NOTE -
4.2.3.4 CSPEC_CHKS_FAIL
Description Failed CHK.S instructions
Max Inc/Cyc 1
MT Capture Type A

Definition Count of resteering 'chk.s.[mi] r2, target25' and 'chk.s f2, target25' instructions (implies predicated-
on).
NOTE -
Subevents:
ANY 0x015
Counter Affinity OxaaaaO
IAR/OPC/DAR/DREF -/-/-/-
IP-EAR L=5P=1
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Definition Failed integer or floating point CHK.S instructions

FP 0x017

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=1

Definition Failed floating point CHK.S instructions

INT 0x016

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=1

Definition Failed integer CHK.S instructions
4.2.3.5 CSPEC_LOAD

Description Id.s inst commits

Max Inc/Cyc 2

MT Capture Type A

Definition -

NOTE -

Subevents:

ANY Oxcal

Counter Affinity 0x92400

IAR/OPC/DAR/DREF 1/0/D/R

IP-EAR L=7,P=1

Definition Id.s inst commits

NAT Oxca2

Counter Affinity 0x24900

IAR/OPC/DAR/DREF 1/0/D/R

IP-EAR L=7,P=1

Definition Id.s inst commits, fails (i.e. NAT bit is set)
4.2.3.6 DSPEC_CHKA_LDC

Description ALAT chka Idc

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x00f

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF 1/0/D/R

IP-EAR L=6,P=1

Definition This is a per Mport event which is asserted when a Id.c.* or chk.a (integer or floating point)

instruction retires.
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Description ALAT failed chka Idc

Max Inc/Cyc 1

MT Capture Type A

Definition -

Subevents:

ANY 0x011

Counter Affinity Oxaaaa0
IAR/OPC/DAR/DREF 1/0/D/R

IP-EAR L=5P=1

Definition Any ALAT failed chka Idc

FP 0x013

Counter Affinity Oxaaaa0
IAR/OPC/DAR/DREF 1/0/D/R

IP-EAR L=5P=1

Definition ALAT failed floating point chka Idc
INT 0x012

Counter Affinity 0x55550
IAR/OPC/DAR/DREF 1/0/D/R

IP-EAR L=57P=1

Definition ALAT failed integer chka Idc

4.2.3.8 DSPEC_LDC

Description Id.c hitting the ALAT

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x010

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/0/D/R

IP-EAR L=6,P=1

Definition This is a per Mport event which is asserted when a Id.c.* instruction hits in the ALAT.

Correct speculation event ratios depend on speculation resteers being enabled, faulting
mis-speculations are not counted and will distort the computation.

4.2.3.9 EAR_EVENT_DATA

Description Data cache EAR capture
Max Inc/Cyc 2

MT Capture Type F

Event Code 0x019

Counter Affinity OxaaaaO
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IAR/OPC/DAR/DREF 1/0/D/R
Definition This monitor counts the number of captures by the data cache EAR
NOTE -

4.2.3.10 EAR_EVENT_ETB

Description ETB-EAR capture

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x018

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/0/-/-

IP-EAR L=5P=1

Definition This monitor counts the number of captures by the ETB or IP-EAR respectively

NOTE When in ETB mode, exception sources are not counted, only branch source records
4.2.3.11 EAR_EVENT_INST

Description FLI EAR event captured
Max Inc/Cyc 1
MT Capture Type A
Event Code 0x871
Counter Affinity Oxa0aa0
IAR/OPC/DAR/DREF 1/-/-/-
Definition This monitor counts the number of captures by the instruction cache EAR
NOTE -
4.2.3.12 FP_DENORMAL

Description FPU DENORM causing REPLAY
Max Inc/Cyc 1
MT Capture Type A
Event Code 0x856
Counter Affinity 0x50550
IAR/OPC/DAR/DREF 1/0/-/-
IP-EAR L=7,P=1
Definition This counts 1 for every op which has at least 1 denormal input and causes a normalization replay to
occur.
NOTE FPU will only do denormal replay if f2 is not zero which includes Fmult and Fnorm.
4.2.3.13 FP_FALSE_SIR
Description FPU FALSE SIR
Max Inc/Cyc 1
MT Capture Type A
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Event Code 0x854

Counter Affinity 0x50550

IAR/OPC/DAR/DREF 1/0/-/-

IP-EAR L=7,P=1

Definition This counts 1 for every SIR replay which does not result in a fault after replay.
4.2.3.14 FP_FCHKF_FAIL

Description FPU failed FCHKF

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x853

Counter Affinity Oxa0aa0

IAR/OPC/DAR/DREF 1/0/-/-

IP-EAR L=7,P=1

Definition This counts 1 for every fchkf which fails causing a branch or fault to occur.
4.2.3.15 FP_FLOP

Description Floating point weighed flop count

Max Inc/Cyc 4

MT Capture Type A

Event Code 0x00c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/0/-/-

IP-EAR L=5P=0

Definition This counts FPU flops retired. Flops are defined to be 1 for Adds - 1 for Mults - 2 for FMAs (also

FMS,FNMA). Also counts 1 for Fevtfx, F[a]max, F[a]min, fcmp, frcpa and frsqrta.

4.2.3.16 FP_FLUSH_TO_ZERO

Description FPU flush to zero RES

Max Inc/Cyc 2

MT Capture Type A

Subevents:

FTZ_POSS 0x858

Counter Affinity 0x50550

IAR/OPC/DAR/DREF 1/0/-/-

IP-EAR L=7,Pp=-2

Definition This counts 1 for every op that would be flushed to zero if FTZ was enabled.

FTZ_REAL 0x857

Counter Affinity Oxa0aal
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IAR/OPC/DAR/DREF 1/0/-/-
IP-EAR L=7,P=-2
Definition This counts 1 for every op that was flushed to zero because it was too small to represent as a normal
number.
4.2.3.17 FP_TRUE_SIR

Description FPU TRUE SIR
Max Inc/Cyc 1
MT Capture Type A
Event Code 0x855
Counter Affinity Oxa0aa0
IAR/OPC/DAR/DREF 1/0/-/-
IP-EAR L=7,P=1
Definition This counts 1 for every SIR replay which required a fault after the op was replayed.
4.2.3.18 RETIRED__INST_BR
Description ALIAS for BR_PRED_DETAIL.ANY_ANY_PRED
Max Inc/Cyc 3
MT Capture Type A
Event Code 0x820
Counter Affinity 0x50550
IAR/OPC/DAR/DREF 1/0/-/-
IP-EAR L=7,P=2
Definition Retired branch instructions
4.2.3.19 RETIRED_INST_FC
Description ALIAS for RIL_REQ_OTHER.FC
Max Inc/Cyc 1
MT Capture Type A
Event Code 0xc30
Counter Affinity 0x24900
IAR/OPC/DAR/DREF 1/0/D/R
Definition -
NOTE -
4.2.3.20 RETIRED_INST_FCI
Description ALIAS for RIL_REQ_OTHER.FCI
Max Inc/Cyc 1
MT Capture Type A
Event Code 0xc31
Counter Affinity 0x49200
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IAR/OPC/DAR/DREF

1/0/D/R

Definition

NOTE

4.2.3.21 RETIRED_INST_FP

Description Floating point ops count

Max Inc/Cyc 2

MT Capture Type A

Event Code 0x00b

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF 1/0/-/-

IP-EAR L=6,P=1

Definition This counts 1 for every FPU op retired.

4.2.3.22 RETIRED_INST_LD_FP

Description ALIAS for DATA_REF.LD_FP
Max Inc/Cyc 2

MT Capture Type A

Event Code 0x0df

Counter Affinity Oxaaaa0
IAR/OPC/DAR/DREF 1/0/D/R

IP-EAR L=6,P=1

Definition -

NOTE -

4.2.3.23 RETIRED_INST_LD_INT

Description ALIAS for DATA_REF.LD_INT
Max Inc/Cyc 2

MT Capture Type A

Event Code 0x0de

Counter Affinity 0x55550
IAR/OPC/DAR/DREF 1/0/D/R

IP-EAR L=6,P=1

Definition -

NOTE -

4.2.3.24 RETIRED_INST_M

Description M ops retired
Max Inc/Cyc 2
MT Capture Type A
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Subevents:

ACQ 0x0f4

Counter Affinity OxaaaaO

IP-EAR L=6,P=0

Definition Includes all predicated on, retired instructions with acquire semantics. (Memory fence semantics are

considered to include acquire semantics.)

ANY 0x00d

Counter Affinity OxaaaaO

IP-EAR L=6,P=0

Definition Any M ops retired

MOVTOBSPST OxOca

Counter Affinity OxaaaaO

IP-EAR L=6,P=0

Definition Data prefetch ASB invalidated by BSP store

MOVTODAHR 0x00e

Counter Affinity Oxaaaal

IP-EAR L=6,P=0

Definition M ops retired with DAHR update

REL 0x0f5

Counter Affinity OxaaaaO

IP-EAR L=6,P=0

Definition Includes all predicated on, retired instructions with release semantics. Also includes shootdowns.

(Memory fence semantics are considered to include release semantics.)

4.2.3.25 RETIRED_INST_NOP

Description Nops retired

Max Inc/Cyc 12

MT Capture Type A

Event Code 0x00a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF 1/0/-/-

IP-EAR L=5P=0

Definition Counts the number of no-ops retired

NOTE When Nop squashing is enabled, this count will include brp
4.2.3.26 RETIRED_INST_PTCG

Description ALIAS for RIL_REQ_OTHER.PTCG

Max Inc/Cyc 1

MT Capture Type A

Event Code 0Oxc34

Counter Affinity 0x49200
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IAR/OPC/DAR/DREF 1/0/D/R
Definition -
NOTE -
4.2.3.27 RETIRED__INST_RSE

Description RSE event retired
Max Inc/Cyc 1
MT Capture Type A
Event Code 0x157
Counter Affinity OxaaaaO
IAR/OPC/DAR/DREF -/-1-/-
IP-EAR L=5P=1
Definition An RSE affecting instruction is retiring and committing architectural state: alloc, flushrs, loadrs, call,
cover, return, or rfi with IFS.v set.
NOTE >Per-instruction PMU tags (address and opcode matching) are not used for this event.
4.2.3.28 RETIRED_INST_SEMAPHORE
Description ALIAS for DATA_REF.SEMAPHORE
Max Inc/Cyc 2
MT Capture Type A
Event Code 0x0e5
Counter Affinity OxaaaaO
IAR/OPC/DAR/DREF 1/0/D/R
IP-EAR L=6,P=1
Definition -
NOTE -
4.2.3.29 RETIRED_INST_ST_FP
Description ALIAS for DATA_REF.ST_FP
Max Inc/Cyc 2
MT Capture Type A
Event Code 0x0e2
Counter Affinity 0x55550
IAR/OPC/DAR/DREF 1/0/D/R
IP-EAR L=6,P=1
Definition -
NOTE -
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Description ALIAS for DATA_REF.ST_INT
Max Inc/Cyc 2

MT Capture Type A

Event Code Ox0el

Counter Affinity OxaaaaO
IAR/OPC/DAR/DREF 1/0/D/R

IP-EAR L=6,P=1

Definition -

NOTE -

4.2.3.31 RETIRED_INST_TAGGED

Description Instructions retired

Max Inc/Cyc 12

MT Capture Type A

Subevents:

IAMO_OPMO 0x005

Counter Affinity OxffffO

IAR/OPC/DAR/DREF 1/0/-/-

IP-EAR L=5P=1

Definition Instructions retired, tag channel 0 qualified
IAM1_OPM1 0x006

Counter Affinity OxffffO

IAR/OPC/DAR/DREF 1/0/-/-

IP-EAR L=57P=1

Definition Instructions retired, tag channel 1 qualified
I1AM2_OPMO 0x007

Counter Affinity OxffffO

IAR/OPC/DAR/DREF 1/0/-/-

IP-EAR L=5P=1

Definition Instructions retired, tag channel 2 qualified
IAM3_OPM1 0x008

Counter Affinity OxffffO

IAR/OPC/DAR/DREF 1/0/-/-

IP-EAR L=5P=1

Definition Instructions retired, tag channel 3 qualified

4.2.3.32 RETIRED_PREDICATE_SQUASHED

Description Instructions retired with predicate off
Max Inc/Cyc 12
MT Capture Type A
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Event Code 0x009

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF 1/0/-/-

IP-EAR L=57P=1

Definition Counts the number of retired instructions with their predicate disabled

NOTE When nop squashing is enabled, this count will exclude predicated off squashed nops
4.2.4 Back-End Cycle Accounting

This section enumerates the processor back-end cycle-accounting, also known as stall,
performance monitoring events. The events are ordered by pipe-stage, from earliest to

latest.

The processor’s cycle accounting events are structured in a way that are non-
overlapping down to the sub-event level. This is done by appropriate prioritization
where possible, or by the introduction of "more-than-one" subevents, where multiple
sub-events may assert simultaneously.

At the replay/stall/flush level, the replays are prioritized by the oldest, i.e. latest pipe-
stage involved within the issue group. l.e. WB2 replays trump DET replays.

The non-overlapping property allows for complete sub-level accounting.

4.2.4.1 CYC_BE_BUBBLE

Description Backend cycles stalled

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x024

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition This event captures any cycles lost to replays, flushes or bubbles, including partial replay cycles.
4.2.4.2 CYC_BE_DET_REPLAY

Description Backend DET replay cycles
Max Inc/Cyc 1
MT Capture Type A

Definition A number of structural and data hazards associated with data memory references and a few register
hazards are resolved through DET replay. The pipeline stages emptied by the replay are counted as
"cycles" or bubbles by this event.

NOTE The number of occurrences of DET replays is tightly lower bound by DET_REPLAY.* / 5

Subevents:

ANY 0x04a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-/-

IP-EAR L=5P=0
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Definition Any backend DET replay cycles

DCS_HZRD 0x04c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-/-

IP-EAR L=5P=0

Definition Backend DET replay cycles due to DCS having a full tracking buffer, a data bug conflict between

synchronous and asynchronous returns, or ITC/RUC reads issued too closely together.

FLUSHED_STORE 0x050

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend DET replay cycles due to flushed store. Details: In the rare event that an FLDST updates
the FLD, fails to commit, and then fails to invalidate the corresponding FLD cache line before an FLD
hitting FLDLD makes it down the pipeline because there is a snoop in the pipeline, that FLDLD is
replayed and these cycles are counted by this event.

GR_LOAD 0x04b

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-/-

IP-EAR L=5P=0

Definition Backend DET replay cycles roughly due to single cycle GR load hazards for loads that do not hit in
FLD. (More precisely, DET replay cycles for single-cycle "memory op producer"” to use bypasses that
do not either hit FLD or DCS. Memory op producer: (M1+M2+M3).ldc_op# + M16 + M17 + M19 +
M31.mov_from_urnat# + M33 + M34 + M36 + M38 + M39 + M43 + M46 + M1002).
Includes replay cycles due to speculative predicate replays.

HPW_HZRD 0x051

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend DET replay cycles due to HPW conflict. Details: Mov-to-rr instructions, mov-to-pkr
instructions, and instructions that can cause DTB or IPC purges each take 1 of a particular resource
in HPW. Instructions that can cause DTB or IPC inserts take 2 of the same resource. There are only 2
of these resources in HPW. The resources are freed up after the associated operations have
completed. Any instruction that would require the simultaneous existence of more than 2 resources
will be DET replayed.

LOAD_ACQ 0x04f

Counter Affinity Oxaaaal

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend DET replay cycles due to Load Acquire. Details: An FLDLD/FLDST hit, a Id.c, or a chk.a will

replay as long as an operation with acquire semantics from the same thread is outstanding. Previous
processors forced misses on these operations. Replaying instead reduces the number of operations
that can go into the MLD OZQ behind a Id.acq. The other thread may then be able to make better
use of the MLD OZQ. Ld.acq replays are broken into two chunks. DET replays cover the case when an
outstanding operation with acquire semantics has reached WB6 by the time the operation to be
replayed reaches DET. In other words, DET replays cover the case where the outstanding operation
with acquire semantics is at least 6 cycles ahead of the replayed op. In cases where the outstanding
acquire op is less than 6 cycles ahead of the replayed op, a WB2 replay is used. The DET replays
replay to an IBD issue stall. WB2 replays do not.

LOAD_AFTER_WRITE 0x04e
Counter Affinity 0x55550
IAR/OPC/DAR/DREF -/-1-1-
IP-EAR L=5P=0
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Definition Backend DET replay cycles due to Load after Write. Details: A hitting FLDLD following an overlapping
hitting FLDWR operation either within the same cycle or one cycle later is replayed. If PSR.ac is set
(alignment checking on), "overlapping” means true overlap. This is better than previous processors.
If PSR.ac is not set, "overlapping” means within the same 8-byte chunk.

MT1 0x054

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend DET replay cycles due to more than 1 reason.

STORE_VS_STORE 0x04d

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend DET replay cycles due to Store vs Store hazard. Details: A structural hazard between two

simultaneous hitting FLDSTs with same VA[7:5] and different VA[11:8] causes the second FLDST to
replay. This is similar to a hazard existing in previous processors, but how the specific address bits
conflict has changed.

WRITE_HIT_VS_FILL 0x052

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend DET replay cycles due to Store Hit vs Fill. Details: A hitting FLDST is replayed if it occurs

simultaneously with a fill with same VA[7:6] and different VA[11:8] due to a structural hazard in the
FLD data array. A hitting FLDWR is replayed if it occurs at the same time as or one cycle following a
fill with the same VA[11:6] so that a write targeting a line being replaced will not incorrectly write to
the line that is replacing it.

WRITE_MISS_VS_FILL 0x053

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend DET replay cycles due to Write Miss vs Fill. Details: An FLDST that misses the FLD and has

the same VA[13:6] as a fill that occurs at the same time as or one cycle following the FLDST is DET
replayed. An FLDWR that misses the FLD and has the same VA[13:6] as a fill that occurs one cycle
before the FLDWR is DET replayed. These replays happen because there is not time for the FLDWR to
cancel the fill in the case that the FLDWR and fill are associated with the same VA[63:6].

4.2.4.3 CYC_BE_EXE_REPLAY

Description Backend EXE replay cycles

Max Inc/Cyc 1

MT Capture Type A

Definition Register hazards and miscellaneous other hazards are resolved through EXE replay. The pipeline
stages emptied by the replay are counted as "cycles" or bubbles by this event.

NOTE Sometimes the replay ends with an issue stall until a hazard has resolved. The issue stall itself is
counted by another event.
The number of occurrences of EXE replays is tightly lower bound by EXE_REPLAY__* / 4

Subevents:

ANY 0x03a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-/-

IP-EAR L=5P=0
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Definition Backend EXE replay cycles due to any reason
ARCR 0x048

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-/-

IP-EAR L=5P=0

Definition Backend EXE replay cycles due to AR-CR hazard
FCMP 0x042

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend EXE replay cycles due to fcmp; a predicate consumer needs a predicate from an fp producer
FPSR 0x045

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend EXE replay cycles due to fpsr hazards
FR_FR 0x040

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-/-

IP-EAR L=5P=0

Definition Backend EXE replay cycles due to FR-FR hazard; a new instruction has a source register targeted by

a prior fp arithmetic operation; the HW uses a combination of replays and issue stalls to perfectly
schedule floating point instructions to the needed 6 cycles of separation between producer and
consumer. No extra wasted cycles are generated.

FR_LOAD_RAW 0x03c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend EXE replay cycles due to FR load RAW; a new instruction has a source register targeted by

an outstanding load, or getf instruction.

FR_LOAD_WAW 0x03e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend EXE replay cycles due to FR load WAW; a new instruction has a destination register
targeted by an outstanding load, or getf instruction.

GR_GR 0x03f

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend EXE replay cycles due to GR-GR hazard; a new instruction has a source register targeted by

a prior non-load type instruction; or there is a UNAT register conflict.

GR_LOAD_RAW 0x03b
Counter Affinity OxaaaaO
IAR/OPC/DAR/DREF -/-/-/-
IP-EAR L=5P=0
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Definition

Backend EXE replay cycles due to GR load RAW; a new instruction has a source register targeted by
an outstanding load, or outstanding long latency move, or TLB related operation.

GR_LOAD_WAW 0x03d

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend EXE replay cycles due to GR load WAW; a new instruction has a destination register
targeted by an outstanding load, or outstanding long latency move, or TLB related operation.

MT1_HIGH 0x041

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Esclrzc;nd EXE replay cycles due to more than one (MT1) of GR_LOAD_*, FR_LOAD_*, GR_GR,

MT1_LOW 0x049

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend EXE replay cycles due to more than one (MT1) of FPSR, SRLZ, REL, ARCR

NOTN 0x044

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend EXE replay cycles due to a not-needed replay; predicate prediction turned out wrong

PRED 0x043

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend EXE replay cycles due to miscellaneous predicate hazards;

REL 0x047

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5,P=0

Definition Backend EXE replay cycles due to operations with release semantics

SRLZ 0x046

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend EXE replay cycles due to serialization operations

There are as many as 11 issued instructions in a cycle that can each need to signal an
EXE replay, (squashed nops will not signal EXE replay) and each of these instructions
can need an EXE replay for more than one reason. For replay reporting, there is a
priority per port, a priority per port pair (e.g., MO and M1), and a priority across ports.
Per port (highest to lowest): PDU(FCMP or PRED), NOTN, GRLD_RAW(FRLD_RAW),
GRLD_WAW(FRLD_WAW), GRGR(FRFRHERS; Per port pair: For GR replays, PDU on PO
wipes out reason on P1; Across ports: the order of the above table, top to bottom.
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Only one of the non-any replay reasons is recorded per replay event. If a more-then-
one replay reason is given, the individual replay reasons are not available for that

event.
4.2.4.4 CYC_BE_IBD_STALL

Description Backend IBD stall cycles

Max Inc/Cyc 1

MT Capture Type A

Definition Records the reason for each cycle that no instructions are issued from the instruction buffers

NOTE Otherwise known as issue "bubbles"

Subevents:

ACQ 0x02e

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to an acquire op outstanding; starts after a DET replay.

ANY 0x025

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-/-

IP-EAR L=5P=0

Definition Backend IBD bubbles for any reason

DEBUG 0x039

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to debug; a defeaturing mode is active which creates unnecessary stalls

FEBUB 0x038

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to FE bubble; the instruction fetch engine hasn’t provided anything to
issue

FLD_DMND 0x035

Counter Affinity Oxaaaal

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to FLD memory port demands; No instruction can issue because FLD is
using the memory pipeline for a purge, snoop, HW prefetch, etc., and (1) the first instruction trying
to issue is an M-op, or (2) we just replayed and are trying to reissue the same group of instructions,
or (3) any RSE load or store wants to issue.

FR_LOAD 0x030

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-/-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to FR load RAW or WAW condition; starts after an EXE replay
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FTOF 0x034

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to F to F hazard; floating point scheduling stall

GR_LOAD 0x02f

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to GR load RAW or WAW condition; starts after an EXE replay or DET
replay

HPW 0x02c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to HPW; an HW page walk is in progress and a memory op is waiting for
the result; starts after a WB2 replay.

MTOM 0x033

Counter Affinity Oxaaaa0

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to M to M hazard; this is the one cycle load to load address scheduling
stall; creates one bubble between a first load and a second load where the second load uses the first
load’s target register as an address register.

OZQFULL 0x02d

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to OZQ full or OZ data full; a memory op is denied entry into OZ (MLD
cache control) and is waiting on availability; starts after a WB2 replay.

QFULL 0x037

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-/-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to speculative IBQ full bubble. IBL signaled queue full to FE while FE was
trying to hand IBL some instructions, and later that bubble was exposed to the issue logic.

REL 0x032

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to release semantics; a memory instruction with .rel behavior is waiting
for prior TLB operations to complete; starts after an EXE replay.

RSE_ANY 0x026

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-/-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to any RSE subreason
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RSE_CFLE 0x027

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-/-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to injection of RSE fill into the pipeline caused by br.ret or rfi

RSE_LOAD 0x029

Counter Affinity Oxaaaal

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to injection of RSE fill into the pipeline caused by loadrs

RSE_ST 0x028

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to injection of RSE store into the pipeline caused by alloc or flushrs

RSE_WAIT 0x02a

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to RSE waiting to inject another load or store; see below for more info

SRLZ 0x031

Counter Affinity Oxaaaal

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to serialization; an rfi, srlz.i, or srlz.d instruction is waiting for prior
resource updates to complete, or sync.i instruction to finish; starts after an EXE replay

THRSW 0x02b

Counter Affinity Oxaaaal

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to thread switch controller waiting to switch or in the act of switching

WB2_TRAP 0x036

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend IBD bubbles due to WB2 replay trap; some WB2 replays leave nothing to re-issue for one

cycle after the replay. For example, a Id.c that misses the ALAT is handled as a WB2 replay-trap,
where the load retires but the following instructions replay. If the Id.c is at the end of the issue
group, there will be nothing to re-issue in it's group.

Only one of the non-any stall reasons is recorded per cycle. The priority order for the
non-any events is, top to bottom, THRSW down to ARCR, RSE*, MTOM, FTOF, DEBUG,
QFULL, FEBUB, FLDDMND, WB2TRAP. Some of these stall events are mutually
exclusive, so the priority order doesn’t always affect the reporting.

The RSE_WAIT item can be due to a variety of reasons as described in the table below.
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RSE_WAIT can be due to:

initial 2 bubble wait before first RSE load or store can be issued

initial wait on any AR dependency (like mov to AR[BSPS])

initial wait on arch RSE state updates prior to loadrs execution

during load/store in pipeline, wait for rnat bit dependencies to clear

after an rse rnat load, wait for completion before next load (could miss to memory)

oOla|h|W[IN| P

unneeded 3-cycle stall due to frontend RSE mis-speculation on RSE.ndirty

4.2.45 CYC_BE_NO_BUBBLE

Description Backend cycles not stalled

Max Inc/Cyc 1

MT Capture Type A

Event Code 0x023

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-/-

IP-EAR L=5P=0

Definition This event counts the number of cycles an entire issue group was able to retire.

NOTE This event differs from its counterpart in a stall-based pipeline in that it assesses a penalty for issue

groups that retire partially. The "any instruction retired" flavor can be obtained by measuring

IA64_INSTS_RETIRED with PMC.thres set to 1.

4.2.4.6 CYC_BE_WB2_FLUSH

Description Backend WB2 flush cycles
Max Inc/Cyc 1

MT Capture Type A

Definition -

NOTE -

Subevents:

ANY 0x065

Counter Affinity Oxaaaa0
IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5,P=0

Definition Backend WB2 flush cycles
BRU 0x067

Counter Affinity Oxaaaa0
IAR/OPC/DAR/DREF -/-1-1/-

IP-EAR L=5P=0

Definition Backend WB2 flush cycles due to BRU
XPN 0x066

Counter Affinity 0x55550
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IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend WB2 flush cycles due to XPN
4.2.4.7 CYC_BE_WB2_REPLAY

Description Backend WB2 replay cycles

Max Inc/Cyc 1

MT Capture Type A

Definition -

NOTE -

Subevents:

ALLOC_PEC 0x058

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend WB2 replay cycles due to alloc pec hazard

ANY 0x055

Counter Affinity Oxaaaal

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend WB2 replay cycles

BLK_HPW 0x05d

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-/-

IP-EAR L=5P=0

Definition Backend WB2 replay cycles due to blocking HPW. Details: An operation that is going to do a blocking
hardware page walk is WB2 replayed to an IBL issue stall.

DAHR_HZRD 0x061

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend WB2 replay cycles due to DAHR RAW hazard. Details: If the DPFQ back pressure
mechanism is turned on, that is likely the largest component in these replay cycles. DPFQ back
pressure can occur whenever the MLD OZQ is full and the DPFQ is filling up with Ifetches from the A-
ports or when the DPFQ is filling up with Ifetches from the A-ports and its issuing is blocked. As the
event name suggests, this event also includes Data Access Hint Register (DAHR) hazards typically
involving multiple DAHS modifiers simultaneously in flight in the pipeline.

FP_DEN 0x05b

Counter Affinity OxaaaaO

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend WB2 replay cycles due to FPU denormal

FP_SIR 0x05c

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-
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IP-EAR L=5P=0

Definition Backend WB2 replay cycles due to FPU SIR

LDC 0x056

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1-

IP-EAR L=5P=0

Definition Backend WB2 replay cycles due to a Id.c.

LOAD_ACQ 0x062

Counter Affinity 0x55550

IAR/OPC/DAR/DREF -/-1-1/-

IP-EAR L=5P=0

Definition Backend WB2 replay cycles due to load acquire. Details: See the LOAD_ACQ DET replay. This WB2
replay covers the case where the outstanding acquire op is less than 6 cycles ahead of the op to be
rep