
 

Supply Chain Threats - Software 
White Paper 

 

Authors:  

Matthew Areno, PhD 

Antonio Martin 

 

 

July 2021 

Version 1.0 

 

 

 

  



  Contents 

 

Supply Chain Threats - Software 

White Paper                            

  

 

 

 

You may not use or facilitate the use of this document in connection with any infringement or other legal 

analysis concerning Intel products described herein. You agree to grant Intel a non-exclusive, royalty-free 

license to any patent claim thereafter drafted that includes subject matter disclosed herein. 

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this 

document. 

All information provided here is subject to change without notice. Contact your Intel representative to obtain 

the latest Intel product specifications and roadmaps. 

No computer system can be absolutely secure. 

Copyright © Intel Corporation. All rights reserved. Intel, the Intel logo, and other Intel marks are trademarks of 

Intel Corporation or its subsidiaries. 

Other names and brands may be claimed as the property of others 

 

 



   

Supply Chain Threats - Software 

White Paper                            
3 

 

1 Contents 
1 Contents .................................................................................................................................................................................................. 3 

2 Introduction ........................................................................................................................................................................................... 6 

2.1 Acronyms ...................................................................................................................................................................................... 6 

3 Software Supply Chain Overview ................................................................................................................................................. 7 

3.1 Software Development Life Cycle ....................................................................................................................................... 7 

3.1.1 Concept Stage .................................................................................................................................................................... 8 

3.1.2 Design Stage ....................................................................................................................................................................... 8 

3.1.3 Implementation Stage .................................................................................................................................................... 8 

3.1.4 Build Stage ........................................................................................................................................................................... 9 

3.1.5 Integration Stage .............................................................................................................................................................. 9 

3.1.6 Test Stage ............................................................................................................................................................................ 9 

3.1.7 Deployment Stage ............................................................................................................................................................ 9 

4 Common Life Cycle Adoptions ................................................................................................................................................... 10 

4.1 Waterfall ..................................................................................................................................................................................... 10 

4.2 Iterative ....................................................................................................................................................................................... 10 

4.3 Continuous Integration ........................................................................................................................................................ 11 

4.4 Continuous Delivery .............................................................................................................................................................. 12 

4.5 Continuous Deployment ...................................................................................................................................................... 12 

5 Threat Identification ....................................................................................................................................................................... 14 

5.1 Threat Definitions ................................................................................................................................................................... 14 

5.1.1 Insider Threat .................................................................................................................................................................. 14 

5.1.2 Compromise of Design Documentation ............................................................................................................... 14 

5.1.3 Compromise of Requirements Documentation ................................................................................................ 15 

5.1.4 Malicious Modification of Source Code ................................................................................................................ 15 

5.1.5 Compromise of Code Repository ............................................................................................................................ 15 

5.1.6 Falsification/Compromise of User Credentials ................................................................................................. 15 

5.1.7 Modification of Submission Logs ............................................................................................................................ 15 

5.1.8 Compromise of Development Tools ..................................................................................................................... 16 

5.1.9 Malicious Plugin for Development Tools ............................................................................................................ 16 

5.1.10 Exfiltration of Source Code or Data ....................................................................................................................... 16 

5.1.11 Deletion of Data.............................................................................................................................................................. 16 



  Contents 

 

Supply Chain Threats - Software 

White Paper                           
4 

5.1.12 Compromise of Development System/Network .............................................................................................. 17 

5.1.13 Modification/Poisoning of Build Process ............................................................................................................ 17 

5.1.14 Compromise of Build System ................................................................................................................................... 17 

5.1.15 Injection of Malicious/Vulnerable Library ........................................................................................................... 17 

5.1.16 Compromise of Signing Keys .................................................................................................................................... 17 

5.1.17 Malicious Use of Signing Keys .................................................................................................................................. 18 

5.1.18 Impersonate Library Repository .............................................................................................................................. 18 

5.1.19 Trojan 3rd-party Module.............................................................................................................................................. 18 

5.1.20 Modification of 3rd-party Product ........................................................................................................................... 18 

5.1.21 Modification/Falsification of Test Results ........................................................................................................... 18 

5.1.22 Compromise of Test Equipment/Tools ................................................................................................................ 18 

5.1.23 Disable/Bypass Testing ............................................................................................................................................... 19 

5.1.24 Compromise of Deployment System .................................................................................................................... 19 

5.1.25 Compromise of Update System .............................................................................................................................. 19 

5.1.26 Malicious Insertion of Unauthorized Code ......................................................................................................... 19 

5.1.27 Replacement of Valid Binaries/Patches ............................................................................................................... 19 

5.1.28 Extraction of Customer Information ...................................................................................................................... 19 

6 Recommendations for Mitigations............................................................................................................................................ 20 

6.1.1 Insider Threat .................................................................................................................................................................. 20 

6.1.2 Compromise of Design Documentation ............................................................................................................... 20 

6.1.3 Compromise of Requirements Documentation ................................................................................................ 21 

6.1.4 Modification/Poisoning of Source Code .............................................................................................................. 21 

6.1.5 Compromise of Code Repository ............................................................................................................................ 22 

6.1.6 Falsification/Compromise of User Credentials ................................................................................................. 23 

6.1.7 Modification of Submission Logs ............................................................................................................................ 23 

6.1.8 Compromise of Development Tools ..................................................................................................................... 23 

6.1.9 Malicious Plugin for Development Tools ............................................................................................................ 24 

6.1.10 Exfiltration of Source Code or Data ....................................................................................................................... 24 

6.1.11 Deletion of Data.............................................................................................................................................................. 25 

6.1.12 Modification/Poisoning of Build Process ............................................................................................................ 25 

6.1.13 Compromise of Build System ................................................................................................................................... 26 

6.1.14 Injection of Malicious/Vulnerable Library ........................................................................................................... 27 

6.1.15 Compromise of Signing Keys .................................................................................................................................... 27 



   

Supply Chain Threats - Software 

White Paper                            
5 

 

6.1.16 Malicious Use of Signing Keys .................................................................................................................................. 28 

6.1.17 Impersonate Library Repository .............................................................................................................................. 28 

6.1.18 Trojan 3rd-party Module.............................................................................................................................................. 28 

6.1.19 Modification of 3rd-party Product ........................................................................................................................... 29 

6.1.20 Modification/Falsification of Test Results ........................................................................................................... 29 

6.1.21 Compromise of Test Equipment/Tools ................................................................................................................ 30 

6.1.22 Disable/Bypass Testing ............................................................................................................................................... 30 

6.1.23 Compromise of Deployment System .................................................................................................................... 30 

6.1.24 Compromise of Update System .............................................................................................................................. 31 

6.1.25 Malicious Insertion of Unauthorized Code ......................................................................................................... 31 

6.1.26 Replacement of Valid Binaries/Patches ............................................................................................................... 32 

6.1.27 Extraction of Customer Information ...................................................................................................................... 32 

7 Conclusion .......................................................................................................................................................................................... 33 

 



 

Supply Chain Threats - Software 

White Paper                           
6 

2 Introduction 
Supply chain attacks have seen significant increases both in quantity and severity over the last few years. These 

attacks have resulted in varying level of impacts to companies, from minimal to catastrophic. Such attacks 

have targeted both hardware and software products as attackers attempt to leverage any avenue possible to 

disrupt or compromise the integrity of these products. Protection of the software supply chain is critical to 

both the validation of software solutions and the prevention of malicious alterations to otherwise legitimate 

code. 

The purpose of this document is to provide an outline of the software supply chain and the most critical attack 

points that need to be considered in order to mitigate associated attacks. This document should be used as a 

reference for organizations to assess their own mitigations and generate a prioritized plan for mitigating as 

many issues as possible. The attacks listed herein are extensive but not all-encompassing. Supply chain has 

an ever-increasing landscape of potential attacks. As such, this document, and subsequent assessments, 

require frequent reanalysis to remain up to date. 

2.1 Acronyms 
Term Description 

BU Business Unit 

DCBT Design->Code->Build->Test 

EOL End of Life 

HSM Hardware Security Module 

IDE Integrated Development Environment 

MITM Man-in-the-Middle 

SDK Software Development Kit 

SDLC Software Development Life Cycle 

TOCTOU Time-of-Check,Time-of-Use 

2FA Two Factor Authentication 

 

 

 

 



Software Supply Chain Overview  

 

Supply Chain Threats - Software 

White Paper                            
7 

 

3 Software Supply Chain Overview 
The software supply chain generally follows a flow referred to as the Software Development Life Cycle (SDLC). 

Unfortunately, there is no industry-defined version of the SDLC. There are a number of different variances of 

the life cycle that are most commonly based on the toolset or methodology being used, such as Agile or 

Waterfall.  Each variance has its pros and cons, along with specific technologies and deployment strategies for 

which it works best. 

This document will not provide a comprehensive review of all such variances, but will instead present a generic 

template for the SDLC that should then be mapped onto whatever approach is being used by the BU. A best 

guess of potential mappings will be provided but should be validated by each BU before proceeding. 

3.1 Software Development Life Cycle 
For the purposes of this document, the SDLC is a multi-stage process consisting of seven stages. Although 

there is a logical progress between stages, many stages, or even sequences of stages, may be repeated multiple 

times in an iterative fashion. The progressions and iterations represent the primary distinction between the 

various versions of SDLC. The stages and progression used in this document is as follows: 

1. Concept 

2. Design 

3. Implement 

4. Integrate  

5. Build 

6. Test 

7. Deployment 

The progression of these stages is illustrated below in Figure 1. As can the seen, with the exception of the 

Concept and Deployment stages, all other stages overlap with one another. A single software package or 

product is often composed of a large number of independent modules that are all integrated together.  The 

modules may be built separately or may come from a third-party provider, hence the reason the Integrate and 

Build stages may start at the same time.  

At some point, these modules are then integrated into the overall solution and built into the final product. 

Testing is likely also conducted iteratively as part of each modules’ development. Once all integration is 

completed, final testing is still needed for the end product. Upon completion of testing, the product is ready 

for deployment. 

In terms of mapping, the following provides some guidance that may be considered. 

• Concept  -> Requirements & Architecture, Brainstorm, Plan, Analysis 

• Design   -> Build, Prototype 

• Implementation -> Develop, Construct, Coding 

• Integration 

• Build   -> Compile  

• Test   -> Validation 

• Deployment  -> Release, Maintenance 

 



 

Supply Chain Threats - Software 

White Paper                           
8 

 

 

Figure 1 -Stages of the Software Development Life Cycle 

 

3.1.1 Concept Stage 
The Concept Stage is the birthplace for all software development. It is generally started based off an initial 

idea or need the drives the requirement for a new product or an enhancement to an existing product. This is 

traditionally where a set of requirements is established to provide guidelines for how the product will address 

the identified need, as well as creating a conceptual architecture for the product. 

Requirements identified during this stage will also include the tools and policies for the development of the 

software product. This stage includes determinations on things like development tools and languages, 

repository type with users and roles, and team assignments and structure.  

3.1.2 Design Stage 
The Design Stage builds upon the conceptual architecture created in the Concept Stage and delves into the 

specific of the architecture. The details of the architecture include not only the software solution itself, but 

also any and all hardware or software element with which it will communicate. All inputs/outputs to/from the 

software are identified and the specifics of each are defined. 

It is also during this stage that the product is divided into individual modules based upon the defined 

architecture. The modules are often defined based on integration with a specific piece of hardware, adherence 

to an industry specification, or a core feature or capability. Similar to the architecture, all inputs/outputs are 

identified and communications defined. 

This stage may be re-entered multiple times during the creation of a software product. It is not uncommon for 

teams to address a single, high-level module within an architecture and take it to completion before fully 

defining all other high-level modules. It may also be re-entered as new needs or features are identified over 

the lifespan of the product or even within its initial development. 

3.1.3 Implementation Stage 
Once the design work has been completed, or at least some portion of it, the Implementation Stage begins. 

For software products, this typically mean the writing of the code. This stage will also have significant overlap 



Software Supply Chain Overview  

 

Supply Chain Threats - Software 

White Paper                            
9 

 

with the Integration, Build, and Test stages as modular code bases may incrementally progress through all four 

in a cycle that repeats until the final product is completed. 

3.1.4 Build Stage 
The Build stage is typically iterative and used as periodic checkpoints in the overall development process. With 

software, the build sequence if often used not only to allow for functional testing of the generated code, but 

also to identify syntax and logic bugs that exist in the code. Compilers are a first line of defense in helping to 

discover potential issues through the use of compiler and linker flags used during the build process. The 

generation of proper and effective build scripts becomes a critical aspect in the creation of binaries with as 

few potential vulnerabilities as possible. 

As with the rest of the development process, the build stage is likely broken up into creation of specific 

modules, libraries, and executables. The output of individual build steps often becomes the elements that are 

later integrated into the overall product. A final build step for creation of the end product may re-invoke prior 

builds or may simply integrate their corresponding output. 

3.1.5 Integration Stage 
The Integration stage includes bringing together both internal and external hardware and software. This stage 

is likely to be recurring over the life cycle of the product, occurring at specific product milestones or as 

individual modules are completed or delivered. It is important to note, especially for software, that integration 

includes any and all code sources not specifically created for and by that product. Even utilizing open-source 

libraries, such as OpenSSL or Boost, are considered part of the Integration stage by this document. 

Integration can also include the combination of software with hardware. Software may be developed, built, 

and tested on non-native hardware, but at some point, the software must be integrated with the final or native 

hardware prior to final build, testing, and then deployment.  

3.1.6 Test Stage 
The Test stage is used to verify and validate all aspects of a solution prior to its deployment, in as much as it 

is mathematically feasible to do so. This includes testing of functional and logical elements of the product, as 

well as verifying interfaces for proper and sufficient connection and implementation. Presumably testing will 

also be performed iteratively as each module of the product is completed with a final, exhaustive test(s) 

conducted once everything all components have been integrated together. 

3.1.7 Deployment Stage 
The Deployment stage manages the release of the initial product, along with all subsequence patches, updates, 

or revisions of the product over its life. All prior cycles are likely to continue or to be restarted after the 

beginning of the first Deployment stage, assuming the product is not a one-off solution. As such, the 

Deployment stage remains until the end-of-life (EOL) for the product. 



 

Supply Chain Threats - Software 

White Paper                           
10 

4 Common Life Cycle Adoptions 
The SDLC illustrated in Figure 1 provides a very basic and generic instantiation and flow of the defined stages. 

Over the last two decades, a number of new methodologies have been developed that modify this flow to 

custom tailor it more for the creation and deployment strategy used by the software provider. Understanding 

these different approaches is critical to identifying the most significant attacks that might be leveraged against 

providers. 

This section provides a brief overview of some of these new methods. It should be understood that neither 

this section, nor this document as a whole, is intended to provide any form of analysis of the pros and cons for 

each method. The information here is provided simply for the purpose of providing a high-level overview of 

the different approaches used today for software development. 

4.1 Waterfall 
The Waterfall model is conceptually very similar to the one presented previously. However, the major 

difference is that solutions do not move from one stage to another until all work from the prior stage is 

completed. This results in implementations that tend to be simpler, but less flexible. Because of the 

dependencies, this model does not allow for parallelization of efforts between phases. Multiple teams may be 

involved in a single phase but must be working on the same phase. 

4.2 Iterative 
The Iterative model utilizes a repetitive sequence of Design->Code->Build->Test (DCBT) resulting in a final 

product that is then integrated into its final environment, tested accordingly, and then released to the public. 

This particular approach provides the ability to modularize a software solution that gradually builds upon each 

iteration of the DCBT sequence. 

Because this approach can be highly modularized, it allows for parallel execution among a number of teams. 

This often results in a solution made up of pieces from multiple groups. Presumably the teams all follow the 

same coding and development guidelines or standards and share an overall codebase on a shared repository. 

However, it often creates multiple targets for attackers and provides a rich set of options for the best place to 

perform an attack. 

Figure 2 - Waterfall Development Method 



Common Life Cycle Adoptions  

 

Supply Chain Threats - Software 

White Paper                            
11 

 

 

4.3 Continuous Integration 
This methodology is similar to iterative development, except that here the product is continually evolving with 

new modules or updates being integrated. With this approach rather than waiting until all modules of the 

solution are completed to begin integration, it is instead performed each time a module is successfully 

completed. This results in an intermediate solution that is built upon step by step, but also means an 

incomplete solution is residing at one or more locations. As a consequence, this approach provides the 

potential for introducing several additional attack points and expanding the number of potential attackers. 

 

Figure 4 - Continuous Integration Model 

Figure 3 - Iterative Development Method 



 

Supply Chain Threats - Software 

White Paper                           
12 

4.4 Continuous Delivery 
The next methodology is continuous delivery and is based on the notion of having an end product constantly 

ready to go and providing delivery as determined by customers. All code needs to be ready to go at all stages. 

This results in a significantly more automated process as opposed to a more controlled build that might be 

invoked only based on a pre-defined schedule or with the release of a new update. This may reduce the 

potential for malicious actions during the build process but puts significantly more dependency upon the 

security of the build systems themselves. It also results in more build versions as literally every good build is 

released. 

 

Figure 5 - Continuous Delivery Model 

4.5 Continuous Deployment 
The continuous deployment methodology is virtually identical to continuous delivery except that each good 

build is immediately deployed as opposed to waiting for it to be requested by customers. This has the effect 

of potentially pushing a vulnerable version to customers automatically, thereby expanding the number of 

exploitable victims. 



Common Life Cycle Adoptions  

 

Supply Chain Threats - Software 

White Paper                            
13 

 

 

Figure 6 - Continuous Development Model 



 

Supply Chain Threats - Software 

White Paper                           
14 

5 Threat Identification 

 

Figure 7 – Software Development Life Cycle Threat Listing 

5.1 Threat Definitions 
The remainder of this section is a listing of the definitions of each threat shown in the figure above. These 

definitions, many of which include examples of attacks, should be used to determine if sufficient mitigations 

already exist or if a gap has been discovered that will need to be addressed. The threat model presented is 

based off currently known or suspected attacks and is subject to future additions. As such, it is subject to future 

additions as new attack vectors are identified. 

5.1.1 Insider Threat 
The threat of a malicious, or even unintentional, insiders is the most pervasive and potential impactful of all 

threats. It spans all stages of the SDLC and can be realized through virtually any of the attacks identified in this 

section. Most threats are at least somewhat mitigated via network security solutions, such as intrusion 

detection and corporate firewalls. Insiders are often able to operate from within a corporate network and thus 

bypass many of these mitigations. 

5.1.2 Compromise of Design Documentation 
Design document generated during the Design phase represent critical architectural and functional aspect of 

the end solution. Any malicious modifications to these documents could result in removal or alterations of 

security features, or introduction of known vulnerabilities or weaknesses into the design. Further, even 

unauthorized disclosure of these document could provide significant assistance to attackers in discovering 

attack points not sufficiently protected by any mitigations. 



Threat Identification  

 

Supply Chain Threats - Software 

White Paper                            
15 

 

5.1.3 Compromise of Requirements Documentation 
Requirements documents detail specifics about implementation and integration with a software solution. At 

the Design phase, many of these requirements are still relatively high-level. Modification of these requirements 

can result in significant impact to the overall security of the product as individual modules may not maintain 

cohesive or sufficient security requirements. Modifications also do not have to be malicious and could simply 

be incidental, but not comprehensive, meaning that the impact of intentional modifications were properly 

assessed in regard to their impact on the overall product. Further, even unauthorized disclosure of these 

document could provide significant assistance to attackers in discovering attack points not sufficiently 

protected by any mitigations. 

5.1.4 Malicious Modification of Source Code 
The source code for software programs is effectively the “crown jewel.” The ability of an attacker to modify 

source code should be of critical concern. If an attacker is able to modify source code, they can introduce 

vulnerabilities, weaknesses, backdoors, or disfunction, among other things. Depending on where these 

modifications occur, it may be relatively easy for an attacker to insert the modification without detection. 

Modification can potentially happen in a number of different places and across several stages of the SDLC. It 

could occur on any employee computer hosting the source code, on the repository used to maintain the source 

code, on build systems that compile the code into libraries or executables, or during transit between any such 

systems. Such modification may or may not be detected. For instance, if an attacker changes a file on a 

developer’s computer, that developer might not notice the change when they perform their next commit to 

the repository. 

5.1.5 Compromise of Code Repository 
Code repositories are used to maintain global copies of source code used in development of software 

products. A compromise of such a repository could result in several possible issues, including modification of 

source code, leakage of source code, alterations of commit logs, or the addition or removal of authorized users. 

An attacker could potentially have full control over the repository itself and even use it to attack users as they 

sync with the repository. The code repository could be local, i.e. on the corporate network, or may be a remote, 

i.e. external to the corporate network. 

5.1.6 Falsification/Compromise of User Credentials 
User credentials are typically used to identify individuals responsible for modifications to source code, as well 

as controlling access to share resources. Further, these credentials may also afford certain roles and 

responsibilities for each user, affording customization of access to specific repositories. Compromise of these 

credentials could allow an attacker to access repositories, make modifications as a legitimate user, access 

privileged resources, modify logs, and a variety of other actions. This could also potentially be done if an 

attacker is able to falsify user credentials, either by duplicating a legitimate credential or creating a fake user 

credential,  

Attackers may also seek to obtain credentials from individuals who have left a company, especially disgruntled 

former employees. This would potentially allow them to gain access to systems when credentials are not 

quickly or effectively revoked. 

5.1.7 Modification of Submission Logs 
Submission logs are used to maintain information related to changes in source code and the user responsible 

for them. This information includes what the modifications were, when they were made, who made them, the 



 

Supply Chain Threats - Software 

White Paper                           
16 

name or IP address of the system used, and comments by the submitted on the nature of the changes. Changes 

made to any of this information could result in variety of different impacts to the solution, such as deleting 

information about malicious alterations or inserting false information to implicate an innocent party. 

5.1.8 Compromise of Development Tools 
Design tools, such as Software Development Kits (SDKs) and Integrated Development Environments (IDEs), 

provide feature-rich interfaces for developer in creation of their software. This includes tools like Microsoft 

Visual Studio, Apple Xcode, Eclipse, Vim, Emacs, and Netbeans. If an attacker is able to compromise the 

integrity or configuration of such tools, it would be possible to automatically inject malicious or vulnerable 

code into products. Detection of such an injection is often difficult as it is not always possible to correlate each 

line of a resulting library or binary with the file and code that was used to create it.  

Additionally, the design tools themselves may be malicious in nature. Installation of the tools often requires 

administrative privileges and/or the installation of drivers for the operating system. If the tool is malicious, it 

could use such privilege to install backdoors into the system itself or may simply inject malicious code into 

whatever product it is used to generate. 

5.1.9 Malicious Plugin for Development Tools 
Many of the design tools mentioned previously also support the ability to add open-source or freely 

distributed plugins to provide some improvement to the tool’s existing capabilities or interface. Such plugins 

are rarely subjected to extensive security assessments or validated in any form, other than potential integrity 

checks. Rather than attacking the design tool itself, attackers may leverage a plugin to provide similar 

capabilities as they are a, relatively speaking, much easier attack vector. This is also true for various other tools, 

such as application lifecycle management, build systems, code repositories, automation framework system, 

and testing tools. All such tool typically allow for plugins with varying degrees of security validation. 

5.1.10 Exfiltration of Source Code or Data 
Not all software solutions are open source. As such, exposure of the source code for the solution could result 

in enhanced security risks as assumptions may occasionally be made that are based on the confidentiality of 

the code. As a result, if an attacker is able to compromise a developer machine or repository that has the 

source code, they may be able to extract the code to their own system. This would allow them much greater 

introspection into how the solution works and allow them to automate some of their vulnerability exploration 

efforts. 

Similar to source code, exfiltration of other data can be critical to a product. This would include information 

on the tools used to perform a variety of actions, from testing and validation to building the end product. If an 

attacker is able to garner this information, it can help to refine future attacks or help them identify vulnerable 

systems. Leakage of configuration information may provide insight into the extensiveness of tests and help in 

identifying gaps that may be primary attack points.  

5.1.11 Deletion of Data 
Some attackers may simply be looking to disrupt or even bankrupt a company. One of the easiest ways to do 

that is the destroy the asset itself: the software. If an attacker can gain access to the development network, 

they may be able to delete repositories or backups that are used to store the source code of the product. This 

can result in anywhere from minor to catastrophic damage to the company if the attacker is able to delete 

enough data. 

This risk of data loss is also not limited to source code. Similar consequences may occur from the loss of 

configuration data, provisioning data, cryptographic keys, distributions logs, and customer information. 



Threat Identification  

 

Supply Chain Threats - Software 

White Paper                            
17 

 

Virtually any data retained by the company producing the product has some inherent value, the loss of which 

would bring a variety of consequences. 

5.1.12 Compromise of Development System/Network 
Any system used to perform development work, or to transport associated data, is a potential target for an 

attacker. Once they are able to gain access to the system, they can use it to then gain access to any data or 

resources to which that developer or device may be privy. Rather than attack a source code repository or a 

build system itself, a development system is often substantially easier. This is especially true for mobile 

development systems. 

Additionally, the development network itself may be a target. Several known attacks have occurred due to 

malicious, 3rd-party devices being connected to unnecessary and/or insufficiently protected, networks. Sure 

devices are prime targets as they are often installed behind many of the network intrusion solutions designed 

to keep attackers out of development networks. This is especially true of network equipment, such as routers 

and intelligent switches. 

5.1.13 Modification/Poisoning of Build Process 
The build process is responsible for taking all source code and libraries and converting them into the final 

software product. If an attacker is able to modify the build process in any way, they could replace legitimate 

files with malicious versions or swap a stable library with a known vulnerable one. They might also change 

compiler flags to make the resulting product weaker in some manner, such as leaving in debug symbols or 

removing optimizations. This also includes attacks referred to as poisoning that are specifically design to alter 

the tweak the process in order to have it pass testing when it really should not. 

Additional threats exist based on the extensiveness of the build process itself, such as whether or not the 

output is cryptographically encrypted or signed and whether or not that is automated as part of the build 

process. In such a case, the attacker could leak the keys used, use older or vulnerable keys, or utilize a good 

key to sign a malicious binary. 

5.1.14 Compromise of Build System 
Compromising the entire build system, as opposed to just the process, could provide a number of additional 

risks. Rather than just being able to alter the build process, the attacker would have access to all assets 

accessible by the build system, as well as the potential ability to cover up any nefarious activities. The attacker 

may be able to bypass user authentication checks, submit bogus signing requests, or generate specially crafted 

versions of the product. 

5.1.15 Injection of Malicious/Vulnerable Library 
Most software solutions leverage one or more libraries developed by the open-source community or 3rd party 

vendors. Insertion of a malicious or vulnerable library would result in the vulnerability being incorporated into 

the end product. These libraries could be uploaded to a globally accessible repository or could be injected 

using a man-in-the-middle (MITM) attack between a target system and the repository with which it is 

attempting to communicate. 

5.1.16 Compromise of Signing Keys 
Signing keys are asymmetric private keys that are used to provide a cryptographic verification method to 

ensure both the integrity of the associated code, as well as to prove the authenticity of the code. If an attacker 

is able to compromise these keys, they could use the key to sign their own version of the software and pass it 



 

Supply Chain Threats - Software 

White Paper                           
18 

off as a legitimate version for the original software provider. A compromise may occur within a Hardware 

Security Module (HSM) or standard computer used to generate and store the key. 

5.1.17 Malicious Use of Signing Keys 
As opposed to being compromised, a signing key may also be used in a malicious or unauthorized manner. An 

attacker may generate a malicious or vulnerable software image and then utilize a legitimate signing key to 

pass it off as an authentic image from the owner of the key. Such an attack would often not require direct 

access to the key, but rather only the ability to utilize the key.  

5.1.18 Impersonate Library Repository 
An attacker may seek to impersonate the identity of a legitimate repository. Corruption of domain name service 

(DNS) entries could afford an attacker the ability to receive communications from devices seeking repository 

data from their expected source. Such an attack may happen at any point along the communication line 

between the target system and the repository. Additionally, as mentioned before, an attacker may compromise 

the repository itself and impersonate its identity. 

5.1.19 Trojan 3rd-party Module 
A trojan module is one that behaves in the expected manner at all times until it receives a specific signal. Such 

a signal typically takes on the form or a pre-defined sequence of values through some input channel. Once the 

signal is received, the module could change its operation, output a confidential value, or attempt to lock-up a 

system. Trojans would most frequently be found in 3rd-party modules, though they are often difficult to detect. 

Detection would require an extensive analysis of the module in comparison with the original source, which 

may not be provided, or an exhaustive test of all possible input values and sequence, which is usually 

mathematically impossible.  

5.1.20 Modification of 3rd-party Product 
Software provided by a 3rd-party may come in a number of different forms via a number of different channels. 

An attacker may seek to modify the 3rd-party product either in transit from the provider to the vendor or while 

in storage on the vendor network. If there are no integrity protections of the product, or the integrity is not 

validated prior to any and all usages, it may be possible for the attacker to replace or alter the product prior to 

its integration into the final software product. 

5.1.21 Modification/Falsification of Test Results 
Test results are meant to provide evidence of both sufficient and accurate responses to specific input. 

Modification or falsification of such results by an attacker could allow improper or incomplete products to be 

released to market that can be later compromised. It may also result in the loss of time, money, or inventory 

to the product owner. 

5.1.22 Compromise of Test Equipment/Tools 
Compromise of test equipment can lead to a number of potential issues and risks for software products. In 

addition to the modification or falsification of result, such a compromise could also be used to inject malicious 

payloads, alter functionality, or otherwise modify software while reporting that is still passes all required tests. 

Test systems may also have access to critical resources, like code signing keys or source repositories, and 

thereby be used to perform network attacks against higher value targets from within the network. 



Threat Identification  

 

Supply Chain Threats - Software 

White Paper                            
19 

 

5.1.23 Disable/Bypass Testing 
Disabling or bypass testing procedures could allow insecure or weakened products to be perceived as valid 

and released to market. Such an ability would not require alteration or modification of test results, but rather 

make it appear as though such testing had already occurred or was not necessary. 

5.1.24 Compromise of Deployment System 
Deployment systems are used to distribute completed versions of a software product to end customers. A 

compromise of such a system could lead to a distribution of an unauthorized, modified, or malicious version 

of the product to customers. It could also provide fairly accurate tracking of customers in order to educate 

attackers on likely targets and future dates of adoption. 

5.1.25 Compromise of Update System 
Compromise of an update system may have similar consequences and effects as that of a deployment system, 

though the two systems are not assumed to be the same. Further, a compromised update system may take 

advantage of presumed trusted communications between the update and target systems to inject malicious 

code into the application under the guise of being an update.  

5.1.26 Malicious Insertion of Unauthorized Code 
Malicious code may be injecting into existing products prior to distribution. This may be the result of an image 

that is not signed in its entirety or leveraging a time-of-check, time-of-use (TOCTOU) vulnerability in the 

validation of the signature. This injection could occur anywhere and at any point after the code is originally 

build, assuming it is not signed. If it is signed, the injection would take place any point after such signing has 

occurred. 

5.1.27 Replacement of Valid Binaries/Patches 
Valid binaries or patches for software products may be replaced at a variety of different times, including after 

deployment of the product itself. Many applications that utilize signing only validate the images during the 

initial download or installation. After such point, they rely entirely upon user privilege restrictions on the host 

platform to prevent such replacements. This could result in an attacker replacing valid software with a 

malicious or vulnerable version that is not verified at any point in the future. 

5.1.28 Extraction of Customer Information 
In many cases, attackers are very interested in knowing exactly what customers are downloading products and 

which version they are using. This allows them to better coordinate their attacks and to identify potential 

victims. This type of reconnaissance work is usually performed first in an attempt to determine the value of 

trying to compromise the supply chain of a given vendor. 



 

Supply Chain Threats - Software 

White Paper                           
20 

6 Recommendations for Mitigations 
The purpose of this section is to provide information on potential mitigations that can be used to address each 

of the threats identified in this document. A list of suggested mitigation(s) will be provided, along with three 

measurements on risk to developer (low, medium, high), likelihood of exploit (low, likely, certain), and impact 

to customer (minimal, moderate, huge). Companies may enter their own scores for each of the threats based 

on suggested mitigations and any other mitigations not listed. These scores should help companies to 

determine their highest risk threats and assist in creation of an investment strategy for enhancing their existing 

set of mitigations. 

6.1.1 Insider Threat 

Suggested 

mitigations: 

• User access controls. 

• Periodic audit of logs (recommended prior to every release, minimum of monthly). 

• Multi-party approval for critical operations. 

• Apply hardening to every host on the environment. 

• Create layer 2 network segmentation and apply network access control (firewall) 

for ingress and egress network traffic. 

• Perform periodic vulnerability scanner against the environment. 

• Perform periodic penetration testing. 

• Apply the principle of least privilege. 

• Implement strong authentication methods such as strong password policy, 

certificates, 2FA, etc. 

• Use network monitoring tools (IDS, IPS, etc). 

• Use DLP (Data Loss Prevention) tools. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.2 Compromise of Design Documentation 

Suggested 

mitigations: 

• User access controls. 

• Periodic audit of logs. 

• Redundant systems and/or backups. 

• Apply hardening to the hosts (servers and workstation) storing design documents. 

• Create layer 2 network segmentation between servers storing design 

documentation and workstations; apply network access control (firewall) for 

ingress and egress network traffic. 

• Perform periodic vulnerability scanner against servers storing design 

documentation. 

• Perform periodic penetration testing against hosts storing design documentation. 

• Apply the principle of least privilege. 

• Implement strong authentication methods such as strong password policy, 

certificates, 2FA. 

• Use cryptography (in transit and at rest). 



Recommendations for Mitigations  

 

Supply Chain Threats - Software 

White Paper                            
21 

 

• Classify properly design documents (Confidential, Top Secret, etc.). 

• Do proper disposal of physical media by destroying it. 

• Watermark usage on the documents. 

• Use DLP (Data Loss Prevention) tools. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.3 Compromise of Requirements Documentation 
Suggested 

mitigations: 

• User access controls. 

• Periodic audit of logs. 

• Redundant systems and/or backups. 

• Apply hardening to the hosts (servers and workstation) storing requirement 

documents. 

• Create layer 2 network segmentation between servers storing requirements 

documentation and workstations; apply network access control (firewall) for 

ingress and egress network traffic. 

• Perform periodic vulnerability scanner against servers storing requirements 

documentation. 

• Perform periodic penetration testing against hosts storing requirements 

documentation. 

• Apply the principle of least privilege. 

• Implement strong authentication methods such as strong password policy, 

certificates, 2FA. 

• Use cryptography (in transit and at rest). 

• Classify properly requirement documents (Confidential, Top Secret, etc.). 

• Do proper disposal of physical media by destroying it. 

• Watermark usage on the documents. 

• Use DLP (Data Loss Prevention) tools. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.4 Modification/Poisoning of Source Code 
Suggested 

mitigations: 

• User access controls. 

• Periodic audit of logs (recommended prior to every release, minimum of monthly). 

• Multi-party approval for critical operations. 

• Apply the principle of least privilege. 



 

Supply Chain Threats - Software 

White Paper                           
22 

• Implement strong authentication methods such as strong password policy, 

certificates, 2FA, etc. 

• Apply hardening to the hosts (servers and workstation) storing source code. 

• Create layer 2 network segmentation between servers storing source code and 

workstations; apply network access control (firewall) for ingress and egress 

network traffic. 

• Perform periodic vulnerability scanner against servers storing source code. 

• Perform periodic penetration testing against hosts storing source code. 

• Use cryptography (in transit and at rest). 

• Perform security peer review of every new code, critical patches or big changes 

before committing to the main branch. 

• Implement separated recursive DNS servers for workstations and servers to avoid 

potential cache poisoning attacks. 

• Maintain golden copies of the source code on stand-alone system that can be 

used for comparison. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.5 Compromise of Code Repository 
Suggested 

mitigations: 

• Create layer 2 network segmentation between code repositories and 

workstations; apply network access control (firewall) for ingress and egress 

network traffic 

• Restricted network access. 

• User access controls. 

• Periodic audit of access and system logs. 

• Redundant repositories on separate systems (preferably at least one that is stand-

alone). 

• Apply hardening to code repositories. 

• Perform periodic vulnerability scanners. 

• Perform periodic penetration testing. 

• Apply the principle of least privilege. 

• Implement strong authentication methods such as strong password policy, 

certificates, 2FA, etc. 

• Use cryptography (in transit and at rest). 

• Implement separated recursive DNS servers for workstations and servers to avoid 

potential cache poisoning attacks. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  



Recommendations for Mitigations  

 

Supply Chain Threats - Software 

White Paper                            
23 

 

 

6.1.6 Falsification/Compromise of User Credentials 
Suggested 

mitigations: 

• Strict and quick revocation of user credentials after departure or termination. 

• Implement strong authentication methods such as strong password policy, 

certificates, 2FA. 

• Apply hardening. 

• Create layer 2 network segmentation applying network access control (firewall) 

for ingress and egress network traffic. 

• Periodic audit of access and system logs. 

• Apply the principle of least privilege. 

• Use cryptography (in transit and at rest). 

• Never hardcode credentials into the source code. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.7 Modification of Submission Logs 

Suggested 

mitigations: 

• User access controls. 

• Periodic audit of access and system logs. 

• Redundant systems and/or backups. 

• Periodic validation of current logs against backups. 

• Apply hardening. 

• Create layer 2 network segmentation applying network access control (firewall) 

for ingress and egress network traffic. 

• Perform periodic vulnerability scanners. 

• Perform periodic penetration testing. 

• Apply the principle of least privilege. 

• Use cryptography (in transit and at rest). 

• Use a centralized log server. 

• Allow just append to the log files. 

• Monitor/perform file integrity checks for the logs. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.8 Compromise of Development Tools 
Suggested 

mitigations: 

• Only authorize installation of signed and verified development tool packages. 



 

Supply Chain Threats - Software 

White Paper                           
24 

• Host, and require use of, local network, open-source repositories with 

development tools. 

• Create development environment images for use by developers that are validated 

to ensure tools are not modified. 

• Apply hardening. 

• Perform periodic vulnerability scanners. 

• Perform periodic penetration testing. 

• Apply the principle of least privilege. 

• Monitor/perform file integrity checks for configuration and binaries. 

• Use cryptography (in transit and at rest). 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.9 Malicious Plugin for Development Tools 
Suggested 

mitigations: 

• Only authorize installation of signed and verified design tool plugins. 

• Host, and require use of, local network, open-source repositories with design tool 

plugins. 

• Create development environment images for use by developers that are validated 

to ensure tools and plugins are properly authorized. 

• Apply hardening. 

• Perform periodic vulnerability scanners. 

• Perform periodic penetration testing. 

• Apply the principle of least privilege. 

• Monitor/perform file integrity checks for configuration and binaries. 

• Use cryptography (in transit and at rest). 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.10 Exfiltration of Source Code or Data 
Suggested 

mitigations: 

• Monitor development systems for copy operations over network or removable 

storage (Use DLP (Data Loss Prevention) tools). 

• Reduce user access to small amounts of overall source code. 

• User access controls. 

• Perform periodic audit of access and system logs. 

• Apply hardening. 

• Create layer 2 network segmentation applying network access control (firewall) 

for ingress and egress network traffic. 

• Perform periodic penetration testing. 



Recommendations for Mitigations  

 

Supply Chain Threats - Software 

White Paper                            
25 

 

• Apply the principle of least privilege. 

• Implement separated recursive DNS servers for workstations and servers to avoid 

potential cache poisoning attacks. 

• Use cryptography (in transit and at rest). 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.11 Deletion of Data 
Suggested 

mitigations: 

• Perform periodic (as defined by product) backups of critical data. 

• Maintain backups on multiple systems, at least one of which is on a separate or 

stand-alone network or no network at all. 

• User access controls. 

• Perform periodic audit of access and system logs. 

• Apply hardening. 

• Create layer 2 network segmentation applying network access control (firewall) 

for ingress and egress network traffic. 

• Apply the principle of least privilege. 

• Use cryptography (in transit and at rest). 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.12 Modification/Poisoning of Build Process 
Suggested 

mitigations: 

• Validate each deployment build using a stand-alone system within a 24-hour 

period from release, preferably before release. 

• Audit all changes to build scripts/processes on a weekly basis. 

• Maintain golden copies of build scripts/processes on stand-alone system that can 

be used for comparison. 

• Automate non-critical steps (other than things such as handling signing keys, etc), 

and log them. 

• Use HSM (hardware security modules) for handling secrets such as production 

keys and certificates. 

• Apply hardening. 

• Create layer 2 network segmentation applying network access control (firewall) 

for ingress and egress network traffic. 

• Perform periodic vulnerability scanners. 

• Perform periodic penetration testing. 

• Apply the principle of least privilege. 



 

Supply Chain Threats - Software 

White Paper                           
26 

• Use cryptography (in transit and at rest). 

• Only install and use signed and verified building tools. 

• Monitor/perform file integrity checks for building configuration and tools. 

• Perform periodic audit of access and system logs. 

• Implement strong authentication methods such as strong password policy, 

certificates, 2FA, etc. 

• Periodically scan the building system for malware. 

• Implement separated recursive DNS servers for workstations and servers to avoid 

potential cache poisoning attacks. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.13 Compromise of Build System 
Suggested 

mitigations: 

• Validate each deployment build using a stand-alone system within a 24-hour 

period from release, preferably before release. 

• Create layer 2 network segmentation between building systems and workstations; 

apply network access control (firewall) for ingress and egress network traffic 

• Restrict inbound and outbound network traffic on build system to corporate 

network. 

• Monitor processes started during each build sequence and audit for variations. 

• Automate non-critical steps (other than things such as handling signing keys, etc), 

and log them. 

• Use HSM (hardware security modules) for handling secrets such as production 

keys and certificates. 

• Apply hardening. 

• Perform periodic vulnerability scanners. 

• Perform periodic penetration testing. 

• Apply the principle of least privilege. 

• Use cryptography (in transit and at rest). 

• Only install and use signed and verified building tools. 

• Monitor/perform file integrity checks for building configuration and tools. 

• Perform periodic audit of access and system logs. 

• Implement strong authentication methods such as strong password policy, 

certificates, 2FA, etc. 

• Periodically scan the building system for malware. 

• Implement separated recursive DNS servers for workstations and servers to avoid 

potential cache poisoning attacks. 

Risk to Developer:  

Likelihood of exploit:  



Recommendations for Mitigations  

 

Supply Chain Threats - Software 

White Paper                            
27 

 

Impact to Customer:  

 

6.1.14 Injection of Malicious/Vulnerable Library 
Suggested 

mitigations: 

• Maintain verified, authentic libraries on corporate network. 

• Prohibit use of libraries from sources outside of corporate network. 

• Use cryptography (in transit and at rest). 

• Monitor/perform file integrity checks. 

• Monitor 3rd-party components for vulnerability advisories, EOL (end-of-life) and 

keep those components fixed/updated. 

• Scan binaries and release package for malware. 

• Scan Binaries and 3rd-Party components for known vulnerabilities. 

• Implement separated recursive DNS servers for workstations and servers to avoid 

potential cache poisoning attacks. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.15 Compromise of Signing Keys 
Suggested 

mitigations: 

• Utilize separate debug and production keys. 

• Maintain production keys in hardware security modules (HSM). 

• Keep any system with a HSM on a stand-alone network. 

• When possible, use PKI (public key infrastructure) to allow revocation of keys and 

certificates. 

• User access controls. 

• Periodic audit of access and system logs. 

• Require multi-party approval for all production signing operations. 

• Apply hardening. 

• Create layer 2 network segmentation applying network access control (firewall) 

for ingress and egress network traffic. 

• Perform periodic penetration testing and red teaming. 

• Apply the principle of least privilege. 

• Implement strong authentication methods such as strong password policy, 

certificates, 2FA, etc. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 



 

Supply Chain Threats - Software 

White Paper                           
28 

6.1.16 Malicious Use of Signing Keys 
Suggested 

mitigations: 

• Utilize separate debug and production keys. 

• Maintain production keys in hardware security modules (HSM). 

• Keep any system with a HSM on a stand-alone network. 

• Require multi-party approval for all production signing operations. 

• Apply hardening. 

• Perform periodic penetration testing and red teaming. 

• Apply the principle of least privilege. 

• Implement strong authentication methods such as strong password policy, 

certificates, 2FA, etc. 

• When possible, use PKI (public key infrastructure) to allow revocation of keys and 

certificates. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.17 Impersonate Library Repository 

Suggested 

mitigations: 

• Maintain repositories and mirrors on corporate network. 

• Require https connections for all repositories, local or external. 

• Apply hardening. 

• Create layer 2 network segmentation applying network access control (firewall) 

for ingress and egress network traffic. 

• Monitor/perform file and configuration integrity checks. 

• Implement separated recursive DNS servers for workstations and servers to avoid 

potential cache poisoning attacks. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.18 Trojan 3rd-party Module 
Suggested 

mitigations: 

• Require all 3rd-party modules to be signed by the provider. 

• Periodically scan development environments and 3rd-party components for 

malware. 

• Virus scan and verify all modules prior to use in a build process. 

• Restrict 3rd-party modules to pre-defined collection of trusted providers. 

• Only use verified 3rd-party modules. 

• Create layer 2 network segmentation applying network access control (firewall) 

for ingress and egress network traffic. 

• Perform periodic vulnerability scanners. 

• Perform periodic penetration testing. 



Recommendations for Mitigations  

 

Supply Chain Threats - Software 

White Paper                            
29 

 

• Create and keep an updated list of 3rd-party components and its dependencies. 

• Monitor the 3rd-party components for risks (vulnerability advisories, EOL: end-

of-life, malware, etc) and keep those components patched/updated. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.19 Modification of 3rd-party Product 

Suggested 

mitigations: 

• Require all 3rd-party modules to be signed by the provider. 

• Periodically scan for malware 

• Virus scan and verify all modules prior to use in a build process. 

• Restrict 3rd-party modules to pre-defined collection of trusted providers. 

• Only use verified 3rd-party modules. 

• Require HTTPS connections for transmission of all 3rd-party products. 

• Only install and use signed and verified building tools. 

• Monitor/perform file integrity checks. 

• Create and keep an updated list of 3rd-party components and its dependencies. 

• Monitor the 3rd-party components for risks (vulnerability advisories, EOL: end-

of-life, malware, etc) and keep those components patched/updated. 

• Periodically scan the development environment and 3rd-party components for 

known vulnerabilities. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.20 Modification/Falsification of Test Results 
Suggested 

mitigations: 

• Integrity-protect all test results. 

• Maintain copies of test results on stand-alone system. 

• Perform periodic audits of test results for discrepancies. 

• Periodic audit of access and system logs. 

• User access controls. 

• Apply the principle of least privilege. 

• Apply hardening. 

• Create layer 2 network segmentation applying network access control (firewall) 

for ingress and egress network traffic. 

• Use cryptography (in transit and at rest). 

• Monitor/perform file and configuration integrity checks. 

Risk to Developer:  



 

Supply Chain Threats - Software 

White Paper                           
30 

Likelihood of exploit:  

Impact to Customer:  

 

6.1.21 Compromise of Test Equipment/Tools 
Suggested 

mitigations: 

• Test products on closed network, else create layer 2 network segmentation 

applying network access control (firewall) for ingress and egress network traffic 

• Restrict inbound and outbound network traffic on test equipment to corporate 

network. 

• Monitor processes started during each test sequence and audit for variations. 

• Restrict access to test equipment to minimal personnel. 

• Apply hardening to the tools and testing environments. 

• Perform periodic vulnerability scanners. 

• Perform periodic penetration testing. 

• Apply the principle of least privilege. 

• Implement strong authentication methods such as strong password policy, 

certificates, 2FA, and physical access control. 

• Monitor/perform file integrity checks for configuration and binaries. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.22 Disable/Bypass Testing 
Suggested 

mitigations: 

• Require proof-of-compliance, proof-of-testing, for all products, and versions, 

prior to release. 

• Audit testing logs on periodic basis for discrepancies. 

• Perform regression tests to make sure old/solved vulnerabilities don’t appear 

again. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.23 Compromise of Deployment System 
Suggested 

mitigations: 

• Utilize redundant deployment systems with different operating system 

environments. 

• Perform daily audits of products between different systems. 

• User access protections with access provided to minimal number of employees 

(Apply the principle of least privilege). 

• Apply hardening. 



Recommendations for Mitigations  

 

Supply Chain Threats - Software 

White Paper                            
31 

 

• Create layer 2 network segmentation applying network access control (firewall) 

for ingress and egress network traffic. 

• Perform periodic vulnerability scanners. 

• Perform periodic penetration testing. 

• Use cryptography (in transit and at rest). 

• Monitor/perform file integrity checks. 

• Perform periodic audit of access and system logs. 

• Deploy only signed release packages. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.24 Compromise of Update System 
Suggested 

mitigations: 

• Utilize redundant update systems with different operating system environments. 

• Perform daily audits of products between different systems. 

• User access protections with access provided to minimal number of employees 

(Apply the principle of least privilege). 

• Apply hardening. 

• Create layer 2 network segmentation applying network access control (firewall) 

for ingress and egress network traffic. 

• Perform periodic vulnerability scanners. 

• Perform periodic penetration testing. 

• Use cryptography (in transit and at rest). 

• Monitor/perform file integrity checks. 

• Perform periodic audit of access and system logs. 

• Deploy only signed updates. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.25 Malicious Insertion of Unauthorized Code 
Suggested 

mitigations: 

• Sign all software products prior to distribution. 

• Utilize separate systems for code signing and code distribution. 

• Audit system logs for attempted access to storage location of software products. 

• Apply the principle of least privilege. 

• Monitor/perform file integrity checks. 

• Scan release packages and updates for malware periodically and before any 

release. 



 

Supply Chain Threats - Software 

White Paper                           
32 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.26 Replacement of Valid Binaries/Patches 
Suggested 

mitigations: 

• Sign all software products prior to distribution. 

• Utilize separate systems for code signing and code distribution. 

• Audit system logs for attempted access to storage location of software products. 

• Apply the principle of least privilege. 

• Monitor/perform file integrity checks. 

• Redundant systems and/or backups. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 

6.1.27 Extraction of Customer Information 

Suggested 

mitigations: 

• Maintain customer information on closed network, else restrict inbound and 

outbound network traffic to corporate network (if possible, do not store customer 

information on the deployment and/or update environments). 

• Audit system logs for attempted access to storage location of software products. 

Risk to Developer:  

Likelihood of exploit:  

Impact to Customer:  

 



Conclusion  

 

Supply Chain Threats - Software 

White Paper                            
33 

 

7 Conclusion 
Threats against our software development process and supply chain continue to expand in both scope and 

severity. It is imperative that all organizations and product developers carefully and thoroughly assess their 

existing practices to determine what, if any, security gaps exist and develop strategic plans for appropriate 

mitigations. The information in this document provides an overview of existing threats and an assessment 

template to assist organizations and product developers in making decisions on where to invest in 

improvements.  

Companies are encouraged to make this an honest assessment. The effectiveness of this approach is 

contingent upon an accurate representation of existing mitigations in order to accurately identify gaps. 

Assuming the existence or sufficiency of mitigations, or denying the existence or relevance of threats, will only 

lead to greater problems down the road. This is a critical assessment for the continued success of any 

organization and therefore must be as done as honestly as possible. 

 


